
Unit 7
Conditional Branching
Unit Overview

Students use geometry and knowledge of basic image functions to design
characters for their games, this time using conditional branching to accommodate
different key-events.

Learning Objectives:

Reason about the relative positioning of objects using mathematics
Discover Partial Functions, and how to implement them using Cond
Use Booleans with cond to change control flow
Adapt Design Recipe to add cond

Product Outcomes:

Students will write functions that use conditionals and Booleans
Students will write update-player

State Standards See our Standards Document provided as part of the Bootstrap curriculum.
Length: 90 minutes

Materials and Equipment:
Computers w/ DrRacket or WeScheme
Student workbook
"Luigi’s Pizza" [LuigisPizza.rkt from source-files.zip | WeScheme] preloaded on students’ machines, in front
Pens/pencils for the students, fresh whiteboard markers for teachers
Class posters (List of rules, basic skills, course calendar)
Language Table (see below)

Preparation:
Write agenda on board
All student computers should have their game templates pre-loaded, with their image files linked ins
Seating arrangements: ideally clusters of desks/tables

Types Functions
Number + - * / sq sqrt expt
String string-append string-length

Image
rectangle circle triangle ellipse radial-

star scale rotate put-image
Boolean = > < string=? and or

Introduction
Pizza Toppings

Player Movement
Closing

Agenda

20 min
20 min
25 min
5 min

file:///Users/schanzer/Documents/Bootstrap/Development/curr/distribution/courses/bs1/units/unit7/the-unit.html#lesson_Introduction3413
file:///Users/schanzer/Documents/Bootstrap/Development/curr/distribution/courses/bs1/units/unit7/the-unit.html#lesson_Cond-Example-With-Pizza-Toppings
file:///Users/schanzer/Documents/Bootstrap/Development/curr/distribution/courses/bs1/units/unit7/the-unit.html#lesson_Player-Movement
file:///Users/schanzer/Documents/Bootstrap/Development/curr/distribution/courses/bs1/units/unit7/the-unit.html#lesson_Closing3532
file:///Users/schanzer/Documents/Bootstrap/Development/curr/distribution/Standards.shtml
file:///Users/schanzer/Documents/Bootstrap/Development/curr/distribution/courses/bs1/resources/workbook/StudentWorkbook.pdf
file:///Users/schanzer/Documents/Bootstrap/Development/curr/distribution/courses/bs1/resources/source-files.zip
http://www.wescheme.org/openEditor?publicId=Qzjz5xbQ8h

(Time 20 min)

(Time 20 min)

Introduction

Have students complete the Warmup activity for Luigi’s Pizza, and review their answers.
So what’s special about this code, that makes it different from every other function you’ve defined?
Up to now, every function you’ve defined has done the same thing to all of it’s inputs. green-triangle always
made green triangles, no matter what the size was. safe-left? always compared the input coordinate to -50,
update-danger always added or subtracted the same amount, and so on.
cost is special, because different toppings can result in totally different values being returned. That’s because cost
makes use of a special language feature called conditionals, which is abbreviated in the code as cond.
Each conditional has at least one clause. In Luigi’s function, there is a clause for cheese, another for pepperoni, and so
on. Every clause has a Boolean question and a result. If the question evaluates to true, the expression gets evaluated
and returned. If the question is false, the computer will skip to the next clause.
What is the question in the first clause? The second?
Finally, a conditional can also have an else clause, which gets evaluated if all the questions are false. In this
function, what gets returned if all the questions are false?
Functions that use conditions are called piecewise functions, because each condition defines a separate piece of the
function.
Why do people want piecewise functions? Well, think about the player in your game...you’d like the player to move one
way if you hit the "up" key, and another way if you hit the "down" key. Those are two different expressions! Without
cond, you could only write a function that always moves the player up, or always moves it down - but not both.

Pizza Toppings

Intro to Cond Part 1

Intro to Cond Part 2

Let’s take a look at how you might use the Design Recipe to define a piecewise function using Conditionals. Once you
know how to use it, you’ll be able to write other piecewise functions in your game.
Turn to the Design Recipe on Page 23 and grab a Design Recipe Worksheet.
Suppose we’ve been hired by Luigi’s Pizza to write a function that tells us the cost of different pizza pies. Let’s use the
design recipe to write this function.
Have a student read the problem statement.
I need a volunteer to be our function. Pick someone, and copy the contract as they answer. What is your name? cost
Your Domain? String Your Range? Number.; cost: String -> Number
Can someone from the class tell me how we should call this function? For example, "cost’ cheese’!" What will cost
produce? Let’s try this with other toppings...
Now it’s time to write down some examples.
Can anyone raise their hands and tell me what I’d write?
(EXAMPLE (cost "cheese") 9.00)
What are some other examples for cost? What changes between them? (Answer: The topping and the price returned!
Make sure you label those.)
Do you notice something odd here? This is the first time that we’ve ever circled something in the second of the
examples, which wasn’t also circled in the first part. The price that’s being produced changes, but the function never
takes in the price!
That’s a hint that something special is going on, but let’s see how much father the Design Recipe can take us...
Now for the Function Header. What do I write here? (Answer: (define (cost topping)))
The Function Body is next. But now we don’t know what to write! We know that our examples behave differently from
one another – sometimes we want to return 9.00, other times it’s 10.50, etc. So what do we do? Well, we could fill in all
off those results. Let’s do that...
Make a large, 2-column table under the Function Header.
(define (cost topping)

https://docs.google.com/document/d/1k67XlYWkHefd4APynvwSnPKRaSTeOvGD7_lRbI8hHrg/edit
http://www.youtube.com/watch?v=2ckWSjWum-8
http://www.youtube.com/watch?v=iTrY-N3MLRY
file:///Users/schanzer/Documents/Bootstrap/Development/curr/distribution/courses/bs1/resources/workbook/StudentWorkbook.pdf

(Time 25 min)

10.50

9.00

11.25

10.25

)
But how do we know when we want to produce 9.00? 10.50? (Answer: When the toppings are cheese and pepperoni)
What we want is a way to go down each line, checking to see if the topping is the right one. If it is, we go on to finish
the line. If not, we go on to the next one.

What’s Domain of our function? (according to the contract) (Answer: String)
What’s the type of "pepperoni"? (Answer: String)
What function compares two strings, and gives back a Boolean? (Answer: string=?)
What’s the Racket code that compares the input topping to the string "pepperoni"? (Answer:
(string=? topping "pepperoni"))
Now we can write that on our first line, as our first topping check. Can you do the rest?

Have students fill out the rest of the table

(string=? topping "pepperoni") 10.50

(string=? topping "cheese") 9.00

(string=? topping "chicken") 11.25

(string=? topping "broccoli") 10.25

Each of these rows is called a condition. A condition has a test and a result. The computer goes down the code, one
condition at a time, and will evaluate the first result for which the condition is true.
Racket has a special function that lets us tell the computer to do this: cond. To use cond,you put square brackets
around each of the branches, and write "cond" at the top:

(define (cost topping)
 (cond
 [(string=? topping "pepperoni") 10.50]
 [(string=? topping "cheese") 9.00]
 [(string=? topping "chicken") 11.25]
 [(string=? topping "broccoli") 10.25]))

Remind students that computers are very specific and can’t make up new answers; we need to tell it what to do in case
the user inputs an item that is not in our list. Let’s add else. If it’s not on the menu, we might still make that pizza for
you, but it’ll cost you! [else 10000000]
Have students try it on the computers, adding new items on their own.
If you have additional time, and would like to try another Cond challenge, check out the supplemental activity.

Player Movement

Great! Now that we know cond we can write update-player.
Draw a screen on the board, and label the coordinates for a player, target and danger. Circle all the data associated
with the Player.
What is the player’s starting x-coordinate? (Answer: The
player’s starting x-coordinate is 200)

file:///Users/schanzer/Documents/Bootstrap/Development/curr/distribution/courses/bs1/units/Supplemental/the-unit.html#lesson_Function-Example-Red-Shape

(Time 5 min)

It’s starting y-coordinate? (Answer: The player’s starting
y-coordinate is 220)
What about after it moves? What’s the new x and y?
What has changed? And by how much? What happens
when we press the down key? What should the new
coordinates be then? (Answer: After it moves, its x-
coordinate is 200 while its y-coordinate is 240. The x-
coordinate has not changed, but its y-coordinate has
increased by 20. If you press the down key, the player
moves down by 20, so its new coordinate would be (200,
220).)
Get students to tell you what update player should do...
We want a function that will move up the screen 20 pixels
when the user presses the up arrow and down 20 pixels
when the user presses the down arrow.
We’ve set up the computer to call update-player, passing in the player’s y-coordinate and the name of the key
pressed. The keypress will either be the string "down" or the string "up" (for now). What kind of data is the y-
coordinate? What kind of data is the keypress? (Answer: The y-coordinate is a number and the keypress is a string)
Make a table showing possibilities and results, walking students through it.
With our pizza example, we had to deal with toppings that weren’t on the menu. Now we need to deal with keys that
aren’t "up" or "down". How do we do that? (Answer: Do nothing! (Or have an else statement that returns the same
position))
On Page 24, you’ll find the word problem for update-player. Grab a Design Recipe Worksheet, fill it out, and then
write this function with your team.
If you don’t like using the arrow keys to make the player move up and down, you can just as easily change them to
work with "w" and "x".
You can also add more advanced movement, by using what you learned about boolean functions. Here’s are some
ideas..

Warping: instead of having the player’s y-coordinate change by adding or subtracting, replace it with a Number
to have the player suddenly appear at that location. (For example, hitting the "c" key causes the player to warp
back to the center of the screen, at y=240.)
Wrapping: Add a condition (before any of the keys) that check to see if the player’s y-coordinate is above the
screen (y > 480). If it is, have the player warp to the bottom (y=0). Add another condition so that the player
warps back up to the top of the screen if it moves below the bottom.
Challenge: Have the player hide when the "h" key is pressed, only to re-appear when it is pressed again!

Closing

Congratulations - you’ve got the beginnings of a working game!
What’s still missing? Nothing happens when the player collides with the object or target!
We’re going to fix these over the next few lessons, and also work on the artwork and story for our games, so stay tuned!
Who can tell us one thing we learned today? Call on 2-3 volunteers.
Who saw someone else in the class do something great? Call on 2-3 volunteers.
Cleanup, dismissal.

Bootstrap by Emmanuel Schanzer is licensed under a Creative Commons 3.0 Unported License. Based on a work
at www.BootstrapWorld.org. Permissions beyond the scope of this license may be available at schanzer@BootstrapWorld.org.

file:///Users/schanzer/Documents/Bootstrap/Development/curr/distribution/courses/bs1/resources/workbook/StudentWorkbook.pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.bootstrapworld.org/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.bootstrapworld.org/
mailto:schanzer@BootstrapWorld.org

