Name: \qquad

Student Workbook

BO@TSTRAP

Equity • Scale • Rigor
Workbook v3.0

Brought to you by the Bootstrap team:

- Emmanuel Schanzer
- Kathi Fisler
- Shriram Krishnamurthi
- Dorai Sitaram
- Joe Politz
- Jennifer Poole
- Ed Campos
- Ben Lerner
- Flannery Denny

Visual Designer: Colleen Murphy
Bootstrap is licensed under a Creative Commons 3.0 Unported License. Based on a work from www.BootstrapWorld.org. Permissions beyond the scope of this license may be available at

Starting to Program: Order of Operations \& Contracts

- The Editor is a software program we use to write Code. Our Editor allows us to experiment with Code on the right-hand side, in the Interactions Area. For Code that we want to keep, we can put it on the left-hand side in the Definitions Area. Clicking the "Run" button causes the computer to read and load everything in the Definitions Area and erase anything that was typed into the Interactions Area.
- Our programming language has many types of values:
- Numbers can be integers like 42 , decimals like 0.5 , or even fractions like $1 / 3$. Clicking on a fraction or a decimal will cause it to switch from one to the other.
- Strings are anything in quotes, such as "Programming is fun! ". A Number written in quotes is still a String!
- Our language also has functions you've seen before, such as addition (+) , subtraction (-), multiplication (*) and division (/).
- Order of Operations is incredibly important when programming. To help us organize our math into something we can trust, we can diagram a math expression using the Circles of Evaluation. For example, the expression $(1-4) \div(10 \times 7)$ can be diagrammed as shown below.

- To convert a Circle of Evaluation into code, we walk through the circle from outside-in, moving left-to-right. We type an open parenthesis when we start a circle, and a close parenthesis when we end one. Once we're in a circle, we write whatever is on the left of the circle, then the function at the top, and then whatever is on the right. The circle above, for example, would be programmed as $(1-4) /(10 * 7)$.
- Images are pictures that are produced by functions. The circle function, for example, takes a Number as the radius, a String to determine if the circle should be "solid" or "outline", and a String to specify the color. You can see the Circle of Evaluation and the Code below:

circle(50, "solid", "red")
- There are a lot of functions in this language! We can make many different shapes, manipulate Strings and Numbers, and a whole lot more. Keeping track of what every function takes in and what it gives back is impossible! To help us remember how to use each function, programmers write down something called a Contract. Contracts include the Name of the function, what it takes in (called the Domain) and what it gives back (called the Range). You have space at the very back of your workbook to write all the Contracts for functions that you discover!

Notice and Wonder

Try typing numbers into the Interactions Area, hitting "Enter", and see what you get back! Some ideas:

1. What is the largest number you can enter? The smallest?
2. Can you write decimals? Fractions?
3. After you get back a decimal, try clicking on it. What happens?
4. Can you write negative numbers? Negative fractions?
5. What else can you try?

Completing Circles of Evaluation from Arithmetic Expressions (2)

For each expression on the left, finish the Circle of Evaluation on the right by filling in the blanks.

Arithmetic Expression
$4+2-\frac{10}{5}$
1

$$
7-1+5 \times 8
$$

2

$$
\frac{-15}{5+-8}
$$

3

$$
(4+(9-8)) \times 5
$$

4

$$
6 \times 4+\frac{9--6}{5}
$$

5

$$
\frac{20}{6+4}-\frac{5 \times 9}{-12-3}
$$

Challenge

Circle of Evaluation

For each math expression on the left, draw its Circle of Evaluation on the right.

	Math Expression	Circle of Evaluation
1	$4-(6-17)$	
2	$25+14-12$	
3	$1+15 \times 5$	
$\frac{15}{10+4 \times-2}$		

1

2

3

4

D
$(1+(1-1)) \times(1+1)$
B
$1+1-1$

C
$\frac{1 \times 1}{1}$

D

$$
(1+(1-1)) \times(1+1)
$$

E

Completing Partial Code from Circles of Evaluation

For each Circle of Evaluation on the left, finish the Code on the right by filling in the blanks.
6

\qquad $+$ \qquad) \qquad * \qquad)

Translate the Circles of Evaluation into Code.

4)

7)

8)

9)

1

2

3

4

D
$(1+1)-1$
C
$(1+1) *((1+1)-1)$

$$
(1+1)-1
$$

E
$(1-1)+1$

Arithmetic Expressions to Circles of Evaluation \& Code

Translate each of the arithmetic expressions below into Circles of Evaluation, then translate them to Code.

Arithmetic
 Circle of Evaluation
 Code

$$
3 \times 7-(1+2)
$$

1

$$
3-(1+2)
$$

$$
3-(1+5 \times 6)
$$

$1+5 \times 6-3$

Translating Circles of Evaluation to Code - w/Square Roots

Translate each of the arithmetic expressions below into Circles of Evaluation, then translate them to Code.
HINT: The function name is num-sqrt .
Arithmetic Circle of Evaluation Code
$\sqrt{9}$

1

$$
\sqrt{5+1}
$$

2

$$
\sqrt{4}+1
$$

$$
3 \sqrt{3}+\sqrt{7}
$$

Exploring Image Functions

By now you know how to make stars in this programming language. Can you figure out how to make triangles, based on what you know about making stars? Rectangles? What other shapes might we be able to make? When you've discovered code to make a new shape, draw the Circle of Evaluation in the table below, along with a sketch of the shape. Then add the function to your contracts page.

1) Use the space below to draw the Circles of Evaluation for the new functions, and draw a picture of what the function produces.

Crisefferamation		lmas
	modees ${ }^{\text {a }}$	x
	protuces -	
	mosume	
	pootuee	

Mystery Functions!

2) There is a function called regular-polygon with 4 inputs. What do they mean?
3) There is a function called radial-star with 5 inputs. What do they mean?
4) There is a function called text. Try to figure out how to use it! What do the inputs mean?

Reading for Domain and Range

As you think about the functions below, remember that you can always type them into your interactions window in the Editor!

1) What is the name of the function being used in:
```
string-length("broccoli") + 8
```

2) What is the domain of the outermost function being used in:
```
scale(2, circle(40, "solid", "blue"))
```

3) What is the domain of the innermost function being used in:
```
scale(2, circle(40, "solid", "blue"))
```

4) How many arguments does the + operator take in:
```
string-length("broccoli") + 8
```

5) What is the range of the function string-length?
6) Is text a String, a function, or an Image?
7) Is the range of text a String or an Image ?
8) What is the first argument to the circle function in:
```
scale(2, circle(40, "solid", "blue"))
```


Composing Image Functions

You'll be investigating these functions with your partner:

```
# text :: String, Number, String -> Image
# scale :: Number, Image -> Image
# rotate :: Number, Image -> Image
# flip-horizontal :: Image -> Image
# flip-vertical :: Image -> Image
```

1) Make an image of your name, in big purple letters. Draw the Circle of Evaluation and write the Code that will create this image.
2) Try using the scale function to make your name bigger or smaller. Draw the Circle of Evaluation (hint: use what you wrote above!), then write the Code.
3) In your own words, what does scale do?
4) Try out rotate, flip-horizontal, and flip-vertical. Use the space below to write your Code, then test out your Code in Pyret when you're ready.

Function Composition - Practice

1) Draw a Circle of Evaluation and write the Code for a solid, green star, size 50 .

Circle of Evaluation:

Code:

\qquad

Using the star described above as the original , draw the Circles of Evaluation and write the Code for each exercise below.
2) A solid, green star, that is triple the size of the original
(using scale)

Circle of Evaluation:

Code: \qquad
4) A solid, green star of size 50 that has been rotated 45 degrees counter-clockwise

Circle of Evaluation:
3) A solid, green star, that is half the size of the original (using scale)

Circle of Evaluation:

Code:

\qquad
5) A solid, green star that is 3 times the size of the original and has been rotated 45 degrees

Circle of Evaluation:

Code: \qquad Code: \qquad

Defining Values and Functions

- We can define values in our program, giving them names that we can refer to later instead of re-typing the same thing over and over. This works the same way it does in math: $x=5+1$ defines the symbol x to be the number 6 .
- In our language, we can define value by writing var $\mathrm{x}=5+1$. Here are a few value definitions:

```
x = 5 + 1
y = x * 7
food = "Pizza!"
dot = circle(y, "solid", "red")
```

- We can also define new functions in our language, to make it do things it didn't do before! To do this, we use a step-by-step process called the Design Recipe.
- The first step is to write the Contract for the function you want to build. Remember, a Contract must include the Name, Domain and Range for the function!
- Then we write a Purpose Statement, which is a short note that tells us what the function should do. Professional programmers work hard to write good purpose statements, so that other people can understand the code they wrote!
- The second step is to write at least two Examples. These are lines of code that show what the function should do for a specific input. Once we see examples of at least two inputs, we can find a pattern and see which parts are changing and which parts aren't.
- Circle the parts that are changing, and label them with a short variable name that explains what they do.
- Finally, the third step is to define the function itself! This is pretty easy after you have some examples to work from: we copy everything that didn't change, and replace the changeable stuff with the variable name!

Defining Values-Explore

```
shape1 = triangle(50, "solid", "red")
```

Type the line of Code above into the Definitions Area of a new program, and press "Run".

1) What happens when you enter shape 1 into the Interactions Area?
2) Brainstorm some other values to define. Use the space below to draw any Circles of Evaluation you need and to organize your thoughts.

Ideas: eye-color (a String), age (a Number), fav-shape (an Image)

Defining Values - Practice

1) On the line below, write the Code to define PRIZE-STAR as a pink, outline star of size 65.

Using the PRIZE-STAR definition from above, draw the Circle of Evaluation and write the Code for each of the exercises. One Circle of Evaluation has been done for you.
2) The outline of a pink star that is 3 times the size of the original (using scale)

Circle of Evaluation:

Code: \qquad
4) The outline of a pink star of size 65
that has been rotated 45 degrees

Circle of Evaluation:

Code: \qquad
6) How does defining values help you as a programmer?

For each of the images below, write the code that would reproduce that image using overlay. The first one has been done for you. (The outermost square is of size 80)

For each of the images below, write the code that would reproduce that image using put-image. The first one has been done for you. (The outermost square is of size 80)

put-image(
square(40, "solid", "black"), 60,60, square(80, "outline", "black"))

Decomposing Flags

Each of the flags below is shown with their width and height. Identify the shapes that make up each flag - including color and dimensions - that make up each flag. Use the flag's dimensions to estimate the dimensions of the different shapes.

Mapping Examples with Circles of Evaluation

If I type...	\rightarrow	It should map to...
EXAMPLE \#1: Circle of Evaluation		Circle of Evaluation:
		triangle
		75 "solid" ${ }^{7}$ "green"
	\rightarrow	
Code: gt(75)		Code: triangle(75, "solid", "green")
EXAMPLE \#2: Circle of Evaluation		Circle of Evaluation:
	\rightarrow	
Code:		Code:

Fast Functions

There is space below to define four different functions, writing their Contracts, two examples, and the definition itself. The function gt - which makes solid green triangles of a given size - is provided as an example. Can you define bc as a function which makes solid blue circles of a given radius?

examples:
\qquad
is
\qquad
is
end
\qquad

Word Problem: rocket-height

Directions : A rocket blasts off, traveling at 7 meters per second. Use the Design Recipe to write a function rocket-height , which takes in a number of seconds and calculates the height.

```
Contract and Purpose Statement
```

Every contract has three parts...
\#
 :" \qquad -> \qquad range
\#
what does the function do?
Examples

Write some examples, then circle and label what changes...

examples:

Definition

Write the definition, giving variable names to all your input values...
function name
\qquad
variable(s)
end

¿รэ!!!?ұиепо әчł әле ұечм : peәу puz
Stronger \& Clearer
1st Read: What is this problem about?
3rd Read: What is a good Purpose Statement?
Purpose Statement 1st Revision:
Purpose Statement 2nd Revision:
Contract:
Purpose Statement: \quad IfI type...
EXAMPLE \#1: Circle of Evaluation
Code:

The Design Recipe

Directions: Write a function marquee that takes in a message and returns that message in large gold letters.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...

examples:

Write the definition, giving variable names to all your input values...

Directions: Write a function circle-area that takes in a radius and returns the area of the circle.

Contract and Purpose Statement

Every contract has three parts...
Examples

Write some examples, then circle and label what changes...
examples:

Write the definition, giving variable names to all your input values...

end

The Design Recipe

Directions: Write a function minimum-wage, that takes in a number of hours worked and returns the amount a worker will get paid at $\$ 10.25 / \mathrm{hr}$.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Write the definition, giving variable names to all your input values...

what the function does with those variable(s)
end

Directions: Write a function tip-calculator that takes in the cost of a meal and returns the 15% tip for that meal.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:
function name
function name
end
input(s)

Definition

Write the definition, giving variable names to all your input values...

\qquad
end

The Design Recipe

Directions : Getting a gym membership costs $\$ 150$, and then there's a $\$ 45 /$ month fee after that. Write a function globo-gym that takes in a number of months and produces the cost of a membership for that many months.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Write the definition, giving variable names to all your input values...

what the function does with those variable(s)
end

Directions : The cost of a ride is a starting price of $\$ 2.50$, plus $\$ 1.50 / \mathrm{mile}$. Write a function rideshare , that takes in a number of miles and produces the cost of that right.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Definition

Write the definition, giving variable names to all your input values...

\qquad

The Design Recipe

Directions: Write a function moving that takes in the days and number of miles driven and returns the cost of renting a truck. The truck is $\$ 55$ per day and each driven mile is $15 \$$.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Write the definition, giving variable names to all your input values...

what the function does with those variable(s)
end

Directions: Write a function lawn-area that takes in the length and width of a rectangular lawn and returns its area.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:
function name
function name
end

Definition

Write the definition, giving variable names to all your input values...

end

The Design Recipe

Directions: Write a function rect-perimeter that takes in the length and width of a rectangle and returns the perimeter of that rectangle.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Write the definition, giving variable names to all your input values...

Directions: Write a function rectprism-vol that takes in the length, width, and height of a rectangular prism and returns the Volume of a rectangular prism.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Write the definition, giving variable names to all your input values..
fun $\underbrace{}_{\text {function name }}$
end

The Design Recipe

Directions: Write a function split-tab that takes in a cost and the number of people sharing the bill and splits the cost equally.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Write the definition, giving variable names to all your input values...

what the function does with those variable(s)
end

Directions: Write a function num-cube that takes in a number and returns the cube of that number.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:
function name
end
function name

Definition

Write the definition, giving variable names to all your input values..

end

Danger and Target Movement

Directions: Use the Design Recipe to write a function update-danger, which takes in the danger's x-coordinate and produces the next x-coordinate.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Write the definition, giving variable names to all your input values...

what the function does with those variable(s)
end

Directions: Use the Design Recipe to write a function update-target, which takes in the danger's x-coordinate and produces the next x-coordinate.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Write the definition, giving variable names to all your input values...

\qquad
end

Problem Decomposition

- Sometimes a problem is too complicated to solve all at once. Maybe there are too many variables, or there is just so much information that we can't get a handle on it!
- We can use Problem Decomposition to break those problems down into simpler pieces, and then work with the pieces to solve the whole. There are two strategies we can use for decomposition:
- Top-Down - Start with the "big picture", writing functions or equations that describe the connections between parts of the problem. Then, work on defining those parts.
- Bottom-Up - Start with the smaller parts, writing functions or equations that describe the parts we understand. Then, connect those parts together to solve the whole problem.
- You may find that one strategy works better for some types of problems than another, so make sure you're comfortable using either one!

Word Problem: revenue

Directions: Use the Design Recipe to write a function revenue, which takes in the number of glasses sold at $\$ 1.75$ apiece and calculates the total revenue.
Contract and Purpose Statement
Every contract has three parts...
\#
 :: \qquad " \qquad
\#
what does the function do?
Examples

Write some examples, then circle and label what changes...

examples:

end is \qquad

\qquad
\qquad
function name
input(s) what the function produces

is

Definition

Write the definition, giving variable names to all your input values...
fun \qquad (\qquad):
function name variable(s)

[^0]
Word Problem: cost

Directions: Use the Design Recipe to write a function cost, which takes in the number of glasses sold and calculates the total cost of materials if each glass costs $\$.30$ to make.

Contract and Purpose Statement

Every contract has three parts...
 :: \qquad -> \qquad
\#
what does the function do?
Examples

Write some examples, then circle and label what changes...

examples:

end is \qquad

\qquad
\qquad
function name
input(s)
what the function produces

) is

Definition

Write the definition, giving variable names to all your input values...

\qquad): variable(s)
\qquad
end

Word Problem: profit

Directions: Use the Design Recipe to write a function profit that calculates total profit from glasses sold, which is computed by subtracting the total cost from the total revenue.

Contract and Purpose Statement

Every contract has three parts...
 :: \qquad -> \qquad
\#
what does the function do?
Examples

Write some examples, then circle and label what changes...

examples:

end is \qquad

\qquad
\qquad
function name input(s) what the function produces

is

Definition

Write the definition, giving variable names to all your input values...
fun \qquad (
function name \qquad): variable(s)
\qquad
end

Introduction to Computational Data Science

Many important questions ("What's the best restaurant in town?", "Is this law good for citizens?", etc.) are answered with data . Data Scientists try and answer these questions by writing programs that ask questions about data .

Data of all types can be organized into Tables.

- Every Table has a header row and some number of data rows.
- Quantitative data is numeric and measures an amount, such as a person's height, a score on a test, distance, etc. A list of quantitative data can be ordered from smallest to largest.
- Categorical data is data that specifies qualities, such as sex, eye color, country of origin, etc. Categorical data is not subject to the laws of arithmetic - for example, we cannot take the "average" of a list of colors.

Answering questions with data can take many forms. Here are a few types of questions, each requiring a different kind of analysis:

- Lookup Questions can be answered just by finding the right row and column of a table. (e.g., "How old is Toggle?")
- Compute Questions can be answered by computing over a single row or column. (e.g., "What is the average weight of animals from the shelter?")
- Relate Questions require looking for trends across multiple columns. (e.g., "Do cats tend to be adopted sooner than dogs?")

The Animals Dataset

name	species	sex	age	fixed	legs	pounds	weeks
Sasha	cat	female	1	false	4	6.5	3
Snuffles	rabbit	female	3	true	4	3.5	8
Mittens	cat	female	2	true	4	7.4	1
Sunflower	cat	female	5	true	4	8.1	6
Felix	cat	male	16	true	4	9.2	5
Sheba	cat	female	7	true	4	8.4	6
Billie	snail	hermaphrodite	0.5	false	0	0.1	3
Snowcone	cat	female	2	true	4	6.5	5
Wade	cat	male	1	false	4	3.2	1
Hercules	cat	male	3	false	4	13.4	2
Toggle	dog	female	3	true	4	48	1
Boo-boo	dog	male	11	true	4	123	24
Fritz	dog	male	4	true	4	92	3
Midnight	dog	female	5	false	4	112	4
Rex	dog	male	1	false	4	28.9	9
Gir	dog	male	8	false	4	88	5
Max	dog	male	3	false	4	52.8	8
Nori	dog	female	3	true	4	35.3	1
Mr. Peanutbutter	dog	male	10	false	4	161	6
Lucky	dog	male	3	true	3	45.4	9
Kujo	dog	male	8	false	4	172	30
Buddy	lizard	male	2	false	4	0.3	3
Gila	lizard	female	3	true	4	1.2	4
Bo	dog	male	8	true	4	76.1	10
Nibblet	rabbit	male	6	false	4	4.3	2
Snuggles	tarantula	female	2	false	8	0.1	1
Daisy	dog	female	5	true	4	68	8
Ada	dog	female	2	true	4	32	3
Miaulis	cat	male	7	false	4	8.8	4
Heathcliff	cat	male	1	true	4	2.1	2
Tinkles	cat	female	1	true	4	1.7	3
Maple	dog	female	3	true	4	51.6	4

For each piece of data below, circle whether it is Categorical or Quantitative data.

1	Hair color	categorical	quantitative
2	Age	categorical	quantitative
3	ZIP Code	categorical	quantitative
4	Year	categorical	quantitative
5	Height	categorical	quantitative
6	Sex	categorical	quantitative
7	Street Name	categorical	quantitative

For each question, circle whether it will be answered by Categorical or Quantitative data.

8	We'd like to find out the average price of cars in a lot.	categorical	quantitative
9	We'd like to find out the most popular color for cars.	categorical	quantitative
10	We'd like to find out which puppy is the youngest.	categorical	quantitative
11	We'd like to find out which cats have been fixed.	categorical	quantitative
12	We want to know which people have a ZIP code of 02907.	categorical	quantitative
13	We'd like to sort a list of phone numbers by area code.	categorical	quantitative

What questions can you ask about the animals dataset? Come up with at least one Lookup, Compute, Relate or Can't Answer question, and write them as wonders below. (Note: These question types are defined on Page 1.)

| What do you NOTICE about this dataset? | What do you WONDER about this dataset? | Question Type |
| :--- | :---: | :--- | :--- | :--- |
| | | Lookup |
| Compute | | |
| Relate | | |

1. This dataset is \qquad Animals that came from an animal shelter \qquad , which contains \qquad data rows.
2. Some of the columns are:
a. \qquad , which contains \qquad categorical \qquad data. Some example values are:
\qquad "cat", "dog", and "rabbit"
b. \qquad , which contains \qquad data. Some example values are:
\qquad .

What's on your mind?

Introduction to Programming in Pyret

Programming languages involve different datatypes, such as Numbers, Strings, and Booleans.

- Numbers are values like $1,0.4,1 / 3$, and -8261.003 .
- Numbers are usually used for quantitative data and other values are usuallyused as categorical data.
- In Pyret, any decimal muststart with a 0. 0.22 is valid, but . 22 is not.
-Strings are values like "Emma", "Rosanna", "Jen and Ed", or even "08/28/1980".
- In Pyret, all strings must be surrounded in quotation marks.
- Booleans are either true or false.

Operators (like +, - * , < , etc.) work the same way in Pyret that they do in math.

- Operators are written between values, for example: $4+2$.
- In Pyret, operators must always have a space around them. $4+2$ is valid, but $4+2$ is not.
- If an expression has different operators, parentheses must be used to show order of operations. $4+2+6$ and $4+(2 * 6)$ are valid, but $4+2 * 6$ is not.

Applying Functions also works the way it does in math. The function name is first, followed by a list of arguments in parentheses.

- In math this could look like $f(5)$ or $f(g(10,4))$.
- In Pyret this could look like star(50, "solid", "red").
- There are many other Pyret functions, for example num-sqr, num-sqrt triangle, star, string-repeat, etc.

Functions have contracts, which help explain how a function should be used. Every contract has three parts:

- The Name of the function - literally, what it's called.
- The Domain of the function - what types of values the function consumes, and in what order.
- The Range of the function - what type of value the function produces.

Value Definitions (like $\mathrm{x}=4$, or $\mathrm{y}=9+6$) also work the way they do in math. Every value definition starts with a name, followed by an equals sign, and then an expression. Once a value is defined, it can be refered to by name.

Numbers and Strings

Make sure you've loaded the code.pyret.org editor, and clicked "Run".

1. Try typing 42 into the Interactions Area and hitting "Enter". What happens?
2. Try typing in other Numbers. What happens if you try a decimal like 0.5 ? A fraction like 1/3 ? Try really big Numbers, and really small ones.
3. String values are always in quotes. Try typing your name (in quotes!). What happens when you hit Enter?
4. Try typing your name with the opening quote, but without the closing quote. What happens? Now try typing it without any quotes.
5. Is 42 the same as " 42 " ? Why or why not? Write your answer below:

Operators

6. Just like math, Pyret has operators like,+- , and /.Try typing in $4+2$, and then $4+2$ (without the spaces). What can you conclude from this? Write your answer below:
\qquad
\qquad
7. Type in the following expressions, one at a time: $4+2+6,4+2$ * $6,4+(2$ * 6$)$. What do you notice? Write your answer below:
\qquad
\qquad
8. Try typing in 4 + "cat", and then "dog" + "cat" . What can you conclude from this? Write your answer below:
\qquad
\qquad

Booleans

Boolean expressions are yes-or-no questions and will always evaluate to either true ("yes") or false ("no"). What will each of the expressions below evaluate to? Write down the result in the blanks provided, and type them into Pyret if you're not sure.

1) $3<=4$	
2) $3==2$	
3) $2<4$	
4) $3<>3$	
5) $5>=5$	
5) $4>=6$	
6) $4>$	

7) "a" > "b"	
8) "a" < "b"	
9) "a" == "b"	
10) "a" <> "b"	
11) "a" <> "a"	
12) "a" == "a"	

13) In your own words, desribe what > does.
14) In your own words, describe what <= does.
15) In your own words, desribe what <> does.
\qquad
\qquad
16) How many Numbers are there in the entire universe? \qquad
17) How many Strings are there in the entire universe? \qquad
18) How many Images are there in the entire universe? \qquad
19) How many Booleans are there in the entire universe?

Defining Functions

We can define our own functions, using a technique called the Design Recipe .

- We use the Design Recipe to help us define functions and think through problems clearly.
- The first step is to write a Contract and Purpose Statement for the function, which specify the Name, Domain and Range of the function and give a summary of what it does.
- The second step is to write at least two examples, which show how the function should work for specific inputs. These examples help us see patterns, and we express those patterns by circling and labeling what changes.
- The final step is to define the function, which generalizes our examples.

The Design Recipe

Directions: Define a function called gt, which makes solid green triangles of whatever size we want.
Contract and Purpose Statement
Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Definition

Write the definition, giving variable names to all your input values...
fun $\frac{\operatorname{gt}\left(\frac{\text { size }}{\text { function name }}\right)}{\text { variable(s) }}$
triangle(size, "solid", "green")
end

Directions: Define a function called bc , which makes solid blue circles of whatever radius we want.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Write the definition, giving variable names to all your input values...

The Design Recipe

Directions: Define a function called sticker, which draws 50px stars in whatever color is input.

Contract and Purpose Statement

Every contract has three parts...
\qquad :: \qquad -> \qquad
\#
what does the function do?
Examples

Write some examples, then circle and label what changes...
examples:
function name
end
function name

Definition

Write the definition, giving variable names to all your input values...

end

Directions: Define a function called nametag, which consumes a Row of the animals table and draws their name in purple, 10px letters. (Assume you have rows animalA and animalB defined.)

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

nametag	"animalA"
function name is	input(s)
function name is	input(s)

end

Definition

Write the definition, giving variable names to all your input values..

What's on your mind?

Applying Functions

Type this line of code into the interactions area and hit "Enter": triangle(50, "solid", "red")

1) What is the name of this function?
2) What did the expression evaluate to?
3) How many arguments does triangle expect?
4) What does the triangle function produce? (Numbers?

Strings? Booleans?)

Catching Bugs

The following lines of code are all BUGGY! Can you spot the mistake? If you have time, type in the buggy code and see if Pyret agrees with you!
5) triangle(20, "solid" "red")

Can you spot the mistake? \qquad
What error message does Pyret return? \qquad
6) triangle(20, "solid")

Can you spot the mistake? \qquad
What error message does Pyret return? \qquad
7) triangle(20, 10, "solid", "red")

Can you spot the mistake? \qquad
What error message does Pyret return? \qquad
8) triangle (20, "solid", "red")

Can you spot the mistake? \qquad
What error message does Pyret return? \qquad
9) triangle 20, "solid", "red")

Can you spot the mistake?

What error message does Pyret return?

Consider the following contract:

```
rotate :: (degree :: Number, img :: Image) -> Image
```

What is the Name of this function? \qquad

How many things are in this function's Domain? \qquad

What is the type of this function's first argument? \qquad

What is the name of this function's second argument? \qquad

What is the Range of this function? \qquad

Circle the expression below that is the correct application of this function, based on its contract.

1. rotate $(45,90)$
2. rotate(circle(99, "solid", "green"))
3. rotate(25 , rectangle(7, 10, "outline", "black"))
4. rotate(rectangle(7, 10, "outline", "black"), 25)

Match the contract (left) with the expression described by the function being used (right).

Contract Expression

make-id :: (name :: String, age :: Number) -> Image 1

2
phone-bill :: (minutes :: Number) -> Number 3
3

C phone-bill(31, 287)
make-id :: (first :: String, last :: String) -> Image 4
4
D make-id("Jessica", "Jones", 32)

What's on your mind?

Plotting and Displaying Data

Data Scientists use displays to visualize data. You've probably seen some of these charts, graphs and plots yourselves! When it comes to displaying Categorical Data , there are two displays that are especially useful.

1. Bar charts show the count or percentage of rows in each category.

- Bar charts provide a visual representation of the frequency of values in a categorical column.
- Bar charts have a bar for every category in a column.
- The more rows in a category, the taller the bar.
- Bars in a bar chart can be show in any order, without changing the meaning of the chart. However, bars are usually shown in some sensible order (bars for the number of orders for different t-shirt sizes might be presented in order of smallest to largest shirt).

2. Pie charts show the percentage of rows in each category.

- Pie charts provide a visual representation of the relative frequency of values in a categorical column.
- Pie charts have a slice for every category in a column.
- The more rows in a category, the larger the slice.
- Slices in a pie chart can be shown in any order, without changing the meaning of the chart. However, slices are usually shown in some sensible order (e.g. slices might be shown in alphabetical order or from the smallest to largest slice).

Using your Contracts page and the Animals Starter File, make each type of display below in pyret. Then sketch the displays and answer the questions. Be sure to add examples of the code you use to your contracts page!

Pie Charts	Bar Charts
Sketch a pie chart here.	Sketch a bar chart here.
Pie charts are constructed from $\quad 1 \quad$ column(s).	Bar charts are constructed from \qquad column(s).
They show categorical data.	They show data.
What does this display tell us?	What does this display tell us?
Box Plots	Histograms
Sketch a box plot here.	Sketch a histogram here.
Box plots are constructed from \qquad column(s).	Histograms are constructed from column(s).
They show \qquad data.	They show \qquad data.
What does this display tell us?	What does this display tell us?

For each type of display, fill in the information below.

Scatter Plots	Linear Regression Plots
Sketch a box plot here.	Sketch a histogram here.
Box plots are constructed from column(s).	Histograms are constructed from column(s).
They show data.	They show data.
What does this display tell us?	What does this display tell us?

\qquad

What's on your mind?

Data Displays and Lookups

Data scientists use data visualizations to gain better insights into their data, and to communicate their findings with others. Making a display requires answering three questions:

1. What data is being displayed? This could be "a random sample of 2000 people", "every animal from the shelter", or "students' aged 14-17".
2. What variables are being explored? Are we looking at the species column? The number of kilograms that an animal weighs? Searching for a relationship between a person's income and their height ?
3. What display is being used, given the variables being explored? If it's a quantitative variable, we might use a histogram or box plot. If it's categorical, we could use a pie or bar chart. If it's two quantitative variables, we probably want a scatter plot.

When looking up a data Row from a Table, programmers use the row-n method. This method takes a single number as its input, which tells the computer which Row we want. Note: Rows are numbered starting at zero!
For example:

```
animals-table.row-n(0) # access the lst data row
animals-table.row-n(16) # access the 17th data row
```

When looking up a column from a Row, programmers use square brackets and the name of the column they want.
For example:

```
animals-table.row-n(11)["age"] # look up the age of the animal in the 12st data row
animals-table.row-n(14)["species"] # look up the species of the animal in the 15th data
row
```

Throughout the rest of the workbook, we will sometimes refer to animalA and animalB.

```
animalA = animals-table.row-n(4)
animalB = animals-table.row-n(13)
```

Match the Display with the description of the data being plotted. Some descriptions may go with more than one display!

Pie Charts 1

Bar Charts

2

A 1 column of Quantitative Data

B 2 columns of Quantitative Data

4

C 1 column of Categorical Data

Data Displays

Fill in the tables below, then write the Pyret code that will make that display. The first column has been filled in for you.

1) A pie-chart showing the species of animals from the shelter.

| Which Rows? | Which Column(s)? | What Display? |
| :--- | :--- | :--- | :--- |
| All the animals | | |
| code: | | |

2) A bar-chart showing the sex of animals from the shelter.

Which Rows?	Which Column(s)?	What Display?
All the animals		
code:		

3) A histogram of the number of pounds that animals weigh.

Which Rows?	Which Column(s)?	What Display?
All the animals		

4) A box-plot of the number of pounds that animals weigh.

Which Rows?	Which Column(s)?	What Display?
All the animals		

5) A scatter-plot, using the animals' species as the labels, age as the x-axis, and pounds as the y-axis.

| Which Rows? | Which Column(s)? | What Display? |
| :--- | :--- | :--- | :--- |
| All the animals | | |

code: \qquad
6) A scatterplot, using the animals' name as the labels, pounds as the x-axis, and weeks as the y-axis.

| Which Rows? | Which Column(s)? | What Display? |
| :--- | :--- | :--- | :--- | :--- |
| All the animals | | |

The table below represents four pets:

pets-table	sex	age	
name	"female"	pounds	
"Toggle"	"male"	3	48
"Fritz"	"female"	4	92
"Nori"	"female"	6	35.3
"Maple"		3	51.6

1) Match each Lookup Question (left) to the code that will give the answer (right).

What's on your mind?

Defining Row Functions \& Using Table Methods

Methods are special functions that are attached to pieces of data. We use them to manipulate Tables.

- In this course, the methods we'll be using are
- row-n - consumes an index (starting with zero!) and produces a row from a table
- order-by - consumes the name of a column and a Boolean value to determine if that table should be sorted by that column in ascending order
- filter - consumes a Boolean-producing function, and produces a table containing only rows for which the function returns true
- build-column - consumes the name of a new column, and a function that produces the values in that column for each Row
- Unlike functions, methods can't be used alone. They have a "secret" argument, which is the data they are attached to. They are written as part of that data, separated by a dot. For example:

```
shapes.row-n(2)
```

- Contracts for methods are different from other functions. They include the type of the data as part of their names. For example:

```
<table>.row-n :: (index :: Number) -> Row
```


Reading Function Definitions

Make sure you have the "Table Methods Starter File" open on your computer, and click "Run".

1 How many functions are defined here?

2 What are their names?

3 What is the domain of is-dog?

4 What is the range of is-old?

5 What is the range of lookup-name ?

6 What does is-fixed(animalA) evaluate to?

7 What does lookup-name(animalB) evaluate to?

8 What does is-old(animalA) evaluate to?

9 What does is-dog(animalA) evaluate to?

10 What does is-fixed do?

11 What does lookup-name do?

12 What does is-old do?

The Design Recipe

For the word problems below, assume animalA and animalB are defined as the data rows for Felix and Midnight, respectively.

Directions: Define a function called lookup-fixed, which looks up whether or not an animal is fixed.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Write the definition, giving variable names to all your input values...

Directions: Define a function called lookup-sex, which consumes a Row of the animals table and looks up the sex of that animal.

Contract and Purpose Statement

Every contract has three parts...

what does the function do?
Examples
Write some examples, then circle and label what changes...
examples:

Definition

Write the definition, giving variable names to all your input values..
fun

\qquad):
\qquad
end

The Design Recipe

For the word problems below, assume animalA and animalB are defined as the data rows for Felix and Midnight, respectively.
Directions: Define a function called is-cat, which consumes a Row of the animals table and computes whether the animal is a cat.

Contract and Purpose Statement
Every contract has three parts...

Examples

Write some examples, then circle and label what changes...
examples:

Definition

Write the definition, giving variable names to all your input values..

Directions: Define a function called is-young, which consumes a Row of the animals table and computes whether it is less than four years old.

Contract and Purpose Statement

Every contract has three parts...

\#	
\#unction name	$::$
	what does the function do?
Examples	

Write some examples, then circle and label what changes...

examples:

function name
function name
end
Definition

Write the definition, giving variable names to all your input values...

what the function does with those variable(s)
end

What's on your mind?

Method Chaining

Method chaining allows us to apply multiple methods with less code.

For example, instead of using multiple definitions, like this:

```
with-labels = animals-table.build-column("labels", nametag)
cats = with-labels.filter(is-cat)
cats.order-by("age", true)
```

We can use method-chaining to write it all on one line, like this:

```
    animals-table.build-column("labels", nametag).filter(is-cat).order-by("age", true)
```

Order Matters! The methods are applied in the order they appear. For example, trying to order a table by a column that hasn't been built will result in an error.

The Design Recipe

For the word problems below, assume you have animalA and animalB defined in your code.
Directions: Define a function called is-dog, which consumes a Row of the animals table and computes whether the animal is a dog.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...

examples:

Definition

Write the definition, giving variable names to all your input values...

Directions: Define a function called is-female, which consumes a Row of the animals table and returns true if the animal is
female.
Contract and Purpose Statement

Every contract has three parts...

what does the function do?
Examples
Write some examples, then circle and label what changes...
examples:

Definition

Write the definition, giving variable names to all your input values...
fun

\qquad):
\qquad
end

The Design Recipe

For the word problems below, assume you have animalA and animalB defined in your code.
Directions: Define a function called is-old, which consumes a Row of the animals table and computes whether it is more than 12 years old.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Write the definition, giving variable names to all your input values...

Directions: Define a function called name-has-s, which returns true if an animal's name contains the letter "s"

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...

examples:

Write the definition, giving variable names to all your input values...
fun $\frac{\text { name-has-s }}{\text { function name }} \underset{\text { variable(s) }}{ }$:

Chaining Methods

You have the following functions defined below (read them carefully!):

```
fun is-fixed(r): r["fixed"] end
fun is-young(r): r["age"] < 4 end
fun nametag(r): text(r["name"], 20, "red") end
```

The table t below represents four animals from the shelter:

name	sex	age	fixed	pounds
"Toggle"	"female"	3	true	48
"Fritz"	"male"	4	true	92
"Nori"	"female"	6	true	35.3
"Maple"	"female"	3	true	51.6

Match each Pyret expression (left) to the description of what it does (right).

t.order-by("age", true)	1	A	Produces a table containing only Toggle and Maple
t.filter(is-fixed)	2	B	Produces a table of only young, fixed animals
t.build-column("sticker", nametag)	3	C	Produces a table, sorted youngest-tooldest
t.filter(is-young)	4	D	Produces a table with an extra column, named "sticker"
$\begin{aligned} & \text { t.filter(is-young) } \\ & \text {.filter(is-fixed) } \end{aligned}$	5	E	Produces a table containing Maple and Toggle, in that order
$\begin{aligned} & \text { t.filter(is-young) } \\ & \text {.order-by("pounds", false) } \end{aligned}$	6	F	Produces a table containing the same four animals
```t.build-column("label", nametag) .order-by("age", true)```	7	G	Won't run: will produce an error
t.order-by("agee", false)	8	H	Produces a table with an extra "label" column, sorted youngest-to-oldest

## Chaining Methods 2: Order Matters!

You have the following functions defined below (read them carefully! ):

```
fun is-female(r): r["sex"] == "female" end
fun kilograms(r): r["pounds"] / 2.2 end
fun is-heavy(r): r["kilos"] > 25 end
```

The table $t$ below represents four animals from the shelter:

name	sex	age	fixed	pounds
"Toggle"	"female"	3	true	48
"Fritz"	"male"	4	true	92
"Nori"	"female"	6	true	35.3
"Maple"	"female"	3	true	51.6

Match each Pyret expression (left) to the description of what it does (right). Note: one description might match multiple expressions!

t.order-by("kilos", true)	1	A	Produces a table containing Toggle, Nori and Maple, with an extra column showing their weight in kilograms
```t.filter(is-female) .build-column("kilos", kilograms)```	2	B	Produces a table containing Maple, Nori and Toggle (in that order)
```t.build-column("kilos", kilograms) .filter(is-heavy)```	3	C	Produces a table containing only Fritz, with a single extra column called kilos
$\begin{aligned} & \text { t.filter(is-heavy) } \\ & \text {.build-column("kilos", kilograms) } \end{aligned}$	4	D	Won't run: will produce an error
```t.build-column("kilos", kilograms) .filter(is-heavy) .order-by("sex", true)```	5	E	Produces a table containing only Fritz, with two extra columns
```t.build-column("female", is-female) .build-column("kilos", kilograms) .filter(is-heavy)```	6	F	Produces a table containing Maple and Fritz

What's on your mind?


[^0]:    end

