Name:

Student Workbook

Spring, 2021 - Pyret Edition

Workbook v3.0

Brought to you by the Bootstrap team:

- Emmanuel Schanzer
- Flannery Denny
- Dorai Sitaram
- Kathi Fisler
- Shriram Krishnamurthi
- Jennifer Poole
- Ed Campos
- Joe Politz
- Ben Lerner

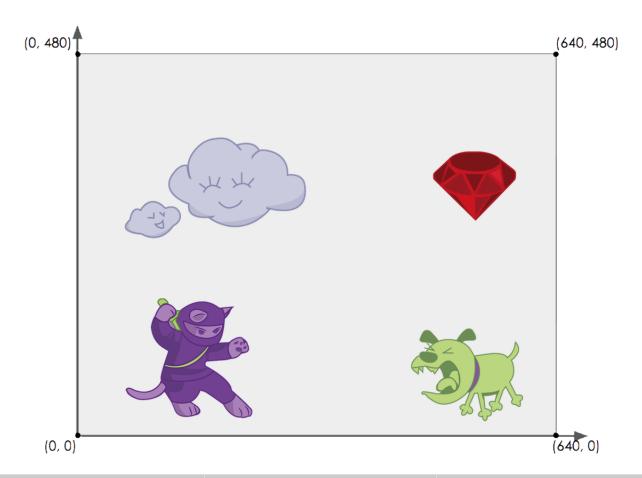
Visual Designer: Colleen Murphy

Bootstrap is licensed under a Creative Commons 3.0 Unported License. Based on a work from www.BootstrapWorld.org. Permissions beyond the scope of this license may be available at contact@BootstrapWorld.org.

The Math Inside Video Games

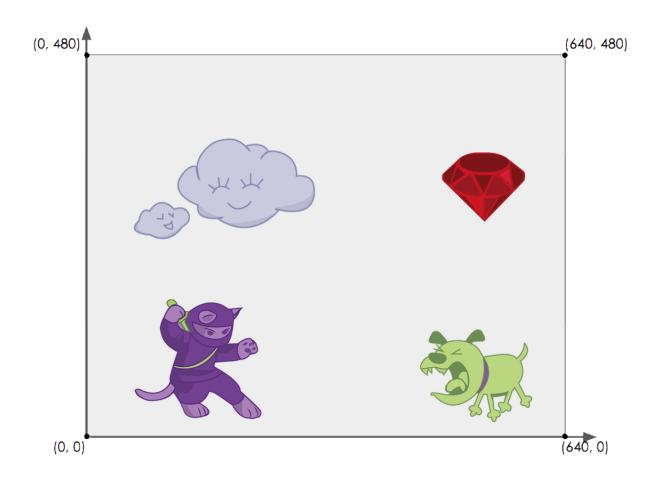
- Video games are all about *change!* How fast is this character moving? How does the score change if the player collects a coin? Where on the screen should we draw a castle?
- We can break down a game into parts, and figure out which parts change and which ones stay the same. For example:
 - Computers use **coordinates** to position a character on the screen. These coordinates specify how far from the left (x-coordinate) and the bottom (y-coordinate) a character should be. Negative values can be used to "hide" a character, by positioning them somewhere off the screen.
 - When a character moves, those coordinates change by some amount. When the score goes up or down, it *also* changes by some amount.
- From the computer's point of view, the whole game is just a bunch of numbers that are changing according to some equations. We might not be able to see those equations, but we can definitely see the effect they have when a character jumps on a mushroom, flies on a dragon, or mines for rocks!
- Modern video games are *incredibly* complex, costing millions of dollars and several years to make, and relying on hundreds of programmers and digital artists to build them. But building even a simple game can give us a good idea of how the complex ones work!

Notice and Wonder


Write down what you notice and wonder about the Ninja Cat game screenshot.

"Notices" should be statements, not questions. What stood out to you? What do you remember?

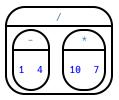
What do you Notice?	What do you Wonder?


Reverse Engineer a Video Game

What is changing in the game? The first example is filled in for you.

Thing in the Game	What Changes About It?	More Specifically?
Dog	Position	x-coordinate

Estimating Coordinates


The coordinates for the TARGET (Ruby) are: (______, _____)

Brainstorm Your Own Game

Created by:	
Background	
Our game takes place:	
In space? The desert? A mall? Player	
The Player is a The Player moves only up and down.	
Target	
Your Player GAINS points when they hit The Target.	
The Target is a	
The Target moves only to the left or right.	
Danger	
Your Player LOSES points when they hit The Danger.	
The Danger is a	
The Danger moves only to the left or right.	
Artwork/Sketches/Proof of Concept	
corners. Then, in the rectangle, sketch a picture of your game!	

Order of Operations

Order of Operations is incredibly important when programming. To help us organize our math into something we can trust, we can diagram a math expression using the Circles of Evaluation . For example, the expression $1-4 \div 10 \times 7$ can be diagrammed as shown below.

To convert a **Circle of Evaluation** into code, we walk through the circle from outside-in, moving left-to-right. We type an open parenthesis when we *start* a circle, and a close parenthesis when we *end* one. Once we're in a circle, we write whatever is on the left of the circle, then the **operation** at the top, and then whatever is on the right. The circle above, for example, would be programmed as ((1 - 4) / (10 * 7)).

Completing Circles of Evaluation from Arithmetic Expressions

For each expression on the left, finish the Circle of Evaluation on the right by filling in the blanks.

	Arithmetic Expression	Circle of Evaluation
1	$4+2-\frac{10}{5}$	4 2 5
2	$7 - 1 + 5 \times 8$	+ * * * * * * * * * * * * * * * * * * *
3	$\frac{-15}{5+-8}$	/ + 5
4	$(4 + (9 - 8)) \times 5$	4 9 8
5	$6 \times 4 + \frac{96}{5}$	4
*	$\frac{20}{6+4} - \frac{5 \times 9}{-12-3}$	

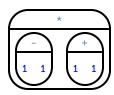
Matching Circles of Evaluation and Arithmetic Expressions

Draw a line from each Circle of Evaluation on the left to the corresponding arithmetic expression on the right.

Circle of Evaluation

Arithmetic Expression

1

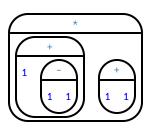

Α

 $1 \div (1 \times 1)$

2

(1+1)-1

3


С

 $(1 \times 1) \div 1$

D

 $(1 + (1 - 1)) \times (1 + 1)$

5

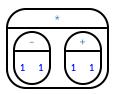
E $(1-1) \times (1+1)$

Translate Arithmetic to Circles of Evaluation & Code (Intro)

 $Translate\ each\ of\ the\ arithmetic\ expressions\ below\ into\ Circles\ of\ Evaluation, then\ translate\ them\ to\ Code.$

	Arithmetic	Circle of Evaluation	Code
1	$(3 \times 7) - (1+2)$		
2	3 – (1 + 2)		
3	$3 - (1 + (5 \times 6))$		
4	$(1 + (5 \times 6)) - 3$		

Completing Partial Code from Circles of Evaluation


For each Circle of Evaluation on the left, finish the Code on the right by filling in the blanks.

. 5. 5. 5.	Circle of Evaluation	Code
1	+ 16	(+ (6 *))
2	- + 25 13 (2 4)	((
3	* 28 10 4	((
4	13 / / / + 2 -4	(13 (7 (2
5	+ / + 3 - 5 3	(((81)3)(53))
6	/ + 7 9 x 2 4	((+) / (*))

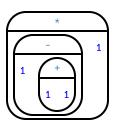
Matching Circles of Evaluation & Code

Draw a line from each Circle of Evaluation on the left to the corresponding Code on the right.

Circle of Evaluation Code

1

Α


((1 - (1 + 1)) * 1)

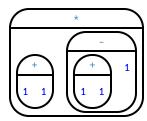
2

В

((1 - 1) * (1 + 1))

3

С


((1 + 1) * ((1 + 1) - 1))

4

D

((1 + 1) - 1)

5

Ε

((1 - 1) + 1)

Translate Arithmetic to Circles of Evaluation & Code 2

 $Translate\ each\ of\ the\ arithmetic\ expressions\ below\ into\ Circles\ of\ Evaluation, then\ translate\ them\ to\ Code.$

	Arithmetic	Circle of Evaluation	Code
1	$6 \times 8 + (7 - 23)$		
2	$18 \div 2 + 24 \times 4 - 2$		
3	$22 - 7 \div 3 + 2$		
4	$24 \div 4 \times 2 - 6 + 20 \times 2$		

Arithmetic Expressions to Circles of Evaluation & Code - Challenge

Translate each of the arithmetic expressions below into Circles of Evaluation, then translate them to Code.

Code			
Circle of Evaluation			
Arithmetic	1 $\frac{16+3^2}{\sqrt{49}-2}$	2 45-9 × (3+(2-4))-7	3 $50 \div 5 \times 2 - ((3+4) \times 2 - 5)$

Introduction to Programming

The **Editor** is a software program we use to write Code. Our Editor allows us to experiment with Code on the right-hand side, in the **Interactions Area**. For Code that we want to *keep*, we can put it on the left-hand side in the **Definitions Area**. Clicking the "Run" button causes the computer to re-read everything in the Definitions Area and erase anything that was typed into the Interactions Area.

Data Types

Programming languages involve different data types, such as Numbers, Strings, Booleans, and even Images.

- Numbers are values like 1, 0.4, 1/3, and -8261.003.
 - Numbers are usually used for quantitative data and other values are usually used as categorical data.
 - In Pyret, any decimal *must* start with a 0. For example, 0.22 is valid, but .22 is not.
- Strings are values like "Emma", "Rosanna", "Jen and Ed", or even "08/28/1980".
 - All strings *must* be surrounded in quotation marks.
- Booleans are either true or false.

All values evaluate to themselves. The program 42 will evaluate to 42, the String "Hello" will evaluate to "Hello", and the Boolean false will evaluate to false.

Operators

Operators (like +, -, *, <, etc.) work the same way in Pyret that they do in math.

- Operators are written between values, for example: 4 + 2.
- In Pyret, operators must always have a space around them. 4 + 2 is valid, but 4+2 is not.
- If an expression has different operators, parentheses must be used to show order of operations. 4 + 2 + 6 and 4 + (2 * 6) are valid, but 4 + 2 * 6 is not.

Applying Functions

Applying functions works much the way it does in math. Every function has a name, takes some inputs, and produces some output. The function name is written first, followed by a list of *arguments* in parentheses.

- In math this could look like f(5) or g(10,4).
- In Pyret, these examples would be written as f(5) and g(10, 4).
- Applying a function to make images would look like star (50, "solid", "red").
- There are many other functions, for example num-sqr, num-sqrt, triangle, square, string-repeat, etc.

Functions have contracts, which help explain how a function should be used. Every contract has three parts:

- The Name of the function literally, what it's called.
- The Domain of the function what types of values the function consumes, and in what order.
- The Range of the function what type of value the function produces.

Numbers and Strings

Make sure you've loaded the code.pyret.org, (CPO) editor, clicked "Run", and are working in the *Interactions Area*.

- 1) Try typing 42 into the Interactions Area and hitting "Enter". What is the largest number the editor can handle?
- 2) Try typing 0.5. Then try typing .5. Then try clicking on the answer. Experiment with other decimals. Explain what you understand about how decimals work in this programming language.
- 3) What happens if you try a fraction like 1/3?
- 4) Try writing negative integers, fractions and decimals.

Strings

String values are always in quotes.

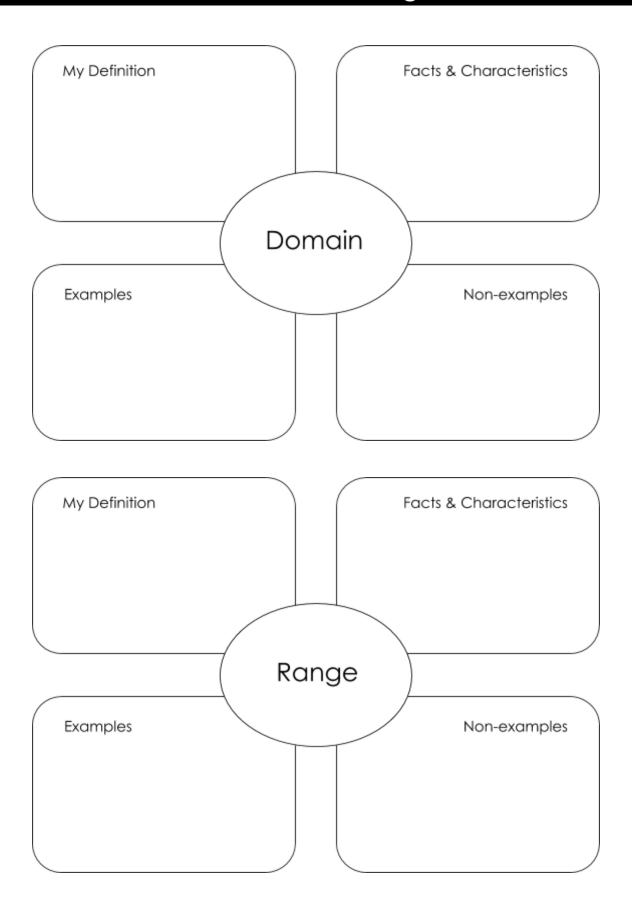
- 5) Is 42 the same as "42"? Why or why not? Write your answer below:
- 6) Try typing your name (in quotes!).
- 7) Try typing a sentence like "I'm excited to learn to code!" (in quotes!).
- 8) Try typing your name with the opening quote, but without the closing quote. Read the error message!
- 9) Now try typing your name without any quotes. Read the error message!
- 10) Explain what you understand about how strings work in this programming language.

Operators

- 11) Just like math, Pyret has *operators* like +, -, * and /. Try typing in 4 + 2, and then 4+2 (without the spaces). What can you conclude from this?
- 12) Type in the following expressions, one at a time: 4 + 2 + 6, 4 + 2 * 6, 4 + (2 * 6). What do you notice?
- 13) Try typing in 4 + "cat", and then "dog" + "cat". What can you conclude from this?

Booleans

Boolean-producing expressions are yes-or-no questions and will always evaluate to either true ("yes") or false ("no"). What will each of the expressions below evaluate to? Write down your prediction in the blanks provided and then type the code into the interactions area to see what it returns.


Pre	ediction:	Computer Returns:			Prediction:	Computer Returns:
1)3 <= 4			2)"a" > "b"			
3) 3 == 2			4)"a" < "b"			
5)2 < 4			6) "a" == "b	"		
7) 5 >= 5			8)"a" <> "a	"		
9)4 >= 6			10)"a" >= "	a"		
11) 3 <> 3			12)"a" <> "	o"		
13) In your own words, describ	e what < 0	loes.				
14) In your own words, describ	e what >=	does.				
15) In your own words, describ	e what <>	does.				
				Prediction:	Computer	Returns:
16)string-contains("ca	atnap", '	cat")				
17)string-contains ("ca	at", "cat	nap")				
18) How many Numbers are	there in the	e entire universe?				
19) How many Strings are th	ere in the e	ntire universe?				
20) How many Images are th	ere in the e	ntire universe?				
21) How many Booleans are	there in the	e entire universe?				

Applying Functions

Type this line of code into the interactions area and hit "Enter":

triangle(50, "solid", "red") 1 What is the name of this function? 2 What did the expression evaluate to? 3 How many arguments does triangle expect? 4 What data type does the triangle function produce? (Numbers? Strings? Booleans?) **Catching Bugs** The following lines of code are all BUGGY! Read the code and the error messages to identify the mistake. 5) triangle(20, "solid" "red") Pyret didn't understand your program around triangle(20, "solid" "red") Can you spot the mistake? 6) triangle(20, "solid") This <u>application expression</u> errored: triangle (20, "solid") 2 arguments were passed to the operator. The operator evaluated to a function accepting 3 parameters. An application <u>expression</u> expects the number of parameters and <u>arguments</u> to be the same. Can you spot the mistake? 7) triangle(20, 10, "solid", "red") This <u>application expression</u> errored: triangle (20, 10, "solid", "red")` <u>4 arguments</u> were passed to the <u>operator</u>. The <u>operator</u> evaluated to a function accepting 3 parameters. An <u>application</u> expression expects the number of parameters and arguments to be the same. Can you spot the mistake? 8) triangle (20, "solid", "red") Pyret thinks this code is probably a function call: triangle (20, "solid", "red") Function calls must not have space between the **function expression** and the **arguments**. Can you spot the mistake?

Domain and Range

Practicing Contracts: Domain & Range

Consider	the	fol	lowing	contrac	:t

is-beach-weather :: Number, String -> Boolean	
4\\A/hatiatha Nama afthirfuntion?	
1) What is the Name of this function?	
2) How many arguments are in this function's Domain ?	
3) What is the type of this function's first argument ?	
4) What is the type of this function's second argument ?	
5) What is the Range of this function?	

6) Circle the expression below that shows the correct application of this function, based on its contract.

```
A. is-beach-weather(70, 90)
B. is-beach-weather(80, 100, "cloudy")
C. is-beach-weather("sunny", 90)
D. is-beach-weather(90, "stormy weather")
```

Consider the following contract:

```
cylinder :: Number, Number, String -> Image

7) What is the Name of this function?

8) How may arguments are in this function's Domain?

9) What is the type of this function's first argument?

10) What is the type of this function's second argument?

11) What is the type of this function's third argument?

12) What is the Range of this function?
```

13) Circle the expression below that shows the correct application of this function, based on its contract.

```
A.cylinder("red", 10, 60)
B.cylinder(30, "green")
C.cylinder(10, 25, "blue")
D.cylinder(14, "orange", 25)
```

Matching Expressions and Contracts

Match the contract (left) with the expression described by the function being used (right).

		Contract	Expression
# make	e-id :: String, Number	-> Image 1	A make-id("Savannah", "Lopez", 32)
# make-id :: 9	String, Number, String	y -> Image 2	B make-id("Pilar", 17)
	# make-id :: String	ŋ -> Image 3	<pre>C make-id("Akemi", 39, "red")</pre>
# make	e-id :: String, String	ı -> Image 4	D make-id("Raïssa", "McCracken")
# make-id :: 5	itring, String, Number	> Image 5	<pre>E make-id("von Einsiedel")</pre>

Contract	Expression
<pre># is-capital :: String, String -> Boolean</pre>	6 A show-pop("Juneau", "AK", 31848)
<pre># is-capital :: String, String, String -> Boolean</pre>	<pre>7</pre>
<pre># show-pop :: String, Number -> Image</pre>	8 C is-capital("Accra", "Ghana")
<pre># show-pop :: String, String, Number -> Image</pre>	9 D show-pop(3751351, "Oklahoma")
<pre># show-pop :: Number, String -> Number</pre>	10 E is-capital("Albany", "NY", "USA")

Using Contracts

Use the contracts to write expressions to generate images similar to those pictured.

ellipse :: Number, Number, String, String -> Image

What changes with the first number?	
What about the shape changes with the second Number?	
Write an expression using ellipse to produce a circle.	

regular-polygon :: Number, Number, String, String -> Image

What changes with the first Number?	
What about the shape changes with the second Number?	
Use regular-polygon to write an	
expression for a square!	
How would you describe a regular	
polygon to a friend?	

Triangle Contracts

1) What kind of triangle does the triangle function produce	1) V	Vhat kind	of triangle does the	triangle	function produce?
---	------	-----------	----------------------	----------	-------------------

There are lots of other kinds of triangles! And Pyret has lots of other functions that make triangles!

```
triangle :: (size:: Number, style :: String, color :: String) -> Image
right-triangle :: (base::Number, height::Number, style::String, color::String) -> Image
isosceles-triangle :: (leg::Number, angle::Number, style::String, color::String) -> Image
```

2) Why do you think triangle only needs one number, while right-triangle and isosceles-triangle need two numbers and triangle-sas needs three?

3) Write right-triangle expressions for the images below. One argument for each should be 100.

- 4) What do you think the numbers in right-triangle represent?
- 5) Write isosceles-triangle expressions for the images below. 1 argument for each should be 100.

6) What do you think the numbers in isosceles-triangle represent?

7) Write 2 expressions that would build **right-isosceles** triangles. Use <u>right-triangle</u> for one expression and <u>isosceles-triangle</u> for the other expression.

Radial Star

```
radial-star :: (

    points :: Number,
    inner-radius :: Number,
    full-radius :: Number,
    style :: String,
    color :: String
) -> Image
```

Using the detailed contract above, match each image to the expression that describes it.

Image			Expression
*	1	Α	radial-star(5, 50, 200, "solid", "black")
*	2	В	radial-star(7, 100, 200, "solid", "black")
	3	С	radial-star(7, 100, 200, "outline", "black")
	4	D	radial-star(10, 150, 200, "solid", "black")
	5	E	radial-star(10, 20, 200, "solid", "black")
*	6	F	radial-star(100, 20, 200, "solid", "black")
*	7	G	radial-star(100, 100, 200, "outline", "black")

What's on your mind?		

Diagramming Function Composition

<pre>f :: Number -> Number Consumes a number, multiplies by 3 to produce the result</pre>	g :: Number -> Number Consumes a number, adds six to produce the result	h :: Number -> Number Consumes a number, subtracts one to produce the result
f(x) = 3x	g(x) = x + 6	h(x) = x - 1

For each function composition diagrammed below, translate it into the equivalent Circle of Evaluation for Order of Operations. Then write expressions for *both* versions of the Circles of Evaluation, and evaluate them for x = 4. The first one has been completed for you.

Function Composition	Order of Operations	Transl	ate & Evaluate
1) h	+ 1	Composition:	h(g(f(x)))
g f	(3 x 6	Operations:	((3 * x) + 6) - 1
		Evaluate for x = 4	h(g(f(4))) = 17
2) g		Composition:	
f h		Operations:	
		Evaluate for x = 4	
3) h		Composition:	
g		Operations:	
		Evaluate for x = 4	
4) f		Composition:	
9 9		Operations:	
		Evaluate for x = 4	

Function Composition — Green Star

1) Draw a Circle of Evaluation and write the Code for a solid, green star, size 50.

Circle of Evaluation:

Code:	
Code:	
Using the star described above as the original, draw the Circles of E-2) A solid, green star, that is triple the size of the original (using scale) Circle of Evaluation:	valuation and write the Code for each exercise below. 3) A solid, green star, that is half the size of the original (using scale) Circle of Evaluation:
Code: 4) A solid, green star of size 50 that has been rotated 45 degrees counter-clockwise Circle of Evaluation:	Code: 5) A solid, green star that is 3 times the size of the original and has been rotated 45 degrees Circle of Evaluation:
Code:	Code:

Function Composition — Your Name

You'll be investigating these functions with your partner:

```
# text :: String, Number, String -> Image  # frame :: Image -> Image
# flip-horizontal :: Image -> Image  # above :: Image, Image -> Image
# flip-vertical :: Image -> Image  # beside :: Image, Image -> Image
```

1) In the editor, write the code to make an image of your name in big letters in a color of your choosing using text. Then draw the Circle of Evaluation and write the Code that will create the image.

-			•	_			
<i>(</i> '	rc	_	∩t.	L١	12	luation:	

Code:

Code:

Using the "image of your name" described above as the original , draw the Circles of Evaluation and write the Code for each exercise below. Test your ideas in the editor to make sure they work.			
2) The framed "image of your name". Circle of Evaluation:	3) The "image of your name" flipped vertically. Circle of Evaluation:		
Code:	Code:		
4) The "image of your name" above "the image of your name" flipped vertically. Circle of Evaluation:	5) The "image of your name" flipped horizontally beside "the image of your name". Circle of Evaluation:		

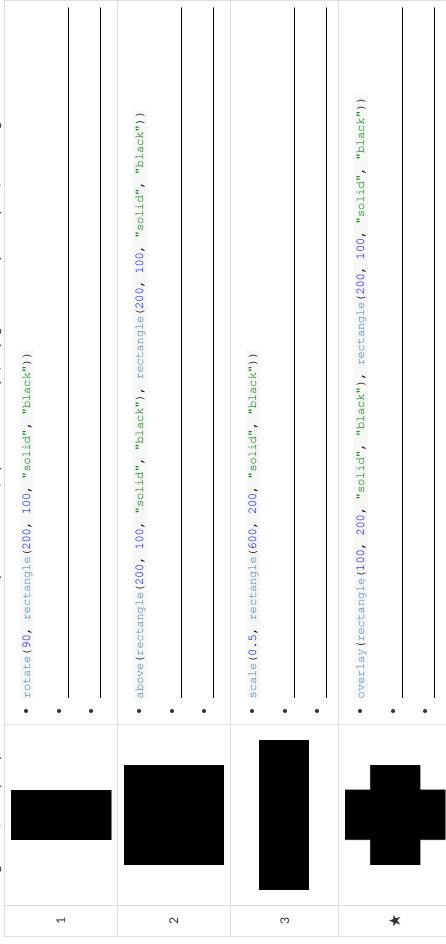
Code:

Function Composition — scale-xy

You'll be investigating these two functions with your partner:

<pre># scale-xy :: Number, Number, Image -> Image</pre>		<pre># overlay :: Image, Images -> Image</pre>
The Image: Circle of Evaluation:		Code:
•	rhombus 40 90 "solid" "purple"	rhombus(40, 90, "solid", "purple")

Starting with the image described above, write the Circles of Evaluation and Code for each exercise below. Be sure to test your code in the editor!


1) A purple rhombus that is stretched 4 times as wide. Circle of Evaluation: Code: Code:	editor!	
Code: 3) The tall rhombus overlayed on the wide rhombus. Circle of Evaluation: Circle of Evaluation: Code: ★: Overlay a red rhombus onto the last image you made. Circle of Evaluation:	1) A purple rhombus that is stretched 4 times as wide.	
3) The tall rhombus overlayed on the wide rhombus. Circle of Evaluation: ★: Overlay a red rhombus onto the last image you made. Circle of Evaluation:	Circle of Evaluation:	Circle of Evaluation:
Circle of Evaluation: Circle of Evaluation:	Code:	Code:
Code: Code:	CIFCIE OF EVALUATION:	CIFCIE OF EVAIUATION:
	Code:	Code:

More than one way to Compose an Image!

Read through these 4 expressions and try to picture the images they are composing. If you're not sure what they'll look like, type them into the interactions area of your editor and see if you can figure out how the code connects to the image.

```
beside(rectangle(200, 100, "solid", "black"), square(100, "solid", "black")) scale-xy(1, 2, square(100, "solid", "black"))
                                                                                       scale(2, rectangle(100, 100, "solid", "black"))
                                                                                                                                                                                                                                                                          rectangle(200, 100, "solid", "black"),
rectangle(100, 50, "solid", "black")))
                                                                                                                                                                                      rectangle(100, 50, "solid", "black"),
```

For each image below, identify 2 expressions that could be used to compose it. The bank of expressions at the top of the page includes one possible option for each image.

Defining Values

In math, we use values like -98.1, 2/3 amd 42. In math, we also use expressions like 1×3 , $\sqrt{16}$, and 5-2. These evaluate to results, and typing any of them in as code produces some answer.

Math also has **definitions**. These are different from values and expressions, because they *they do not produce results*. Instead, they simply create names for values, so that those names can be re-used to make the Math simpler and more efficient.

Definitions always have both a name and an expression. The name goes on the left and the value-producing expression goes on the right, separated by an equals sign:

```
x = 4y = 9 + x
```

The name is defined to be the result of evaluating the expression. Using the above examples, we get "x is defined to be 4, and y is defined to be 13". **Important: there is no "answer" to a definition**, and typing in a definition as code will produce no result.

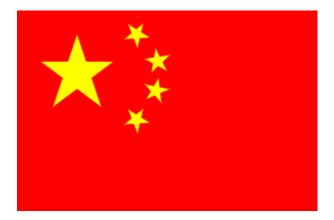
Notice that definitions can refer to previous definitions. In the example above, the definition of y refers to x. But x, on the other hand, cannot refer to y. Once a value has been defined, it can be used in later expressions.

In Pyret, these definitions are written the exact same way:

Try typing these definitions into the Definitions Area on the left, clicking "Run", and then using them in the Interactions Area on the right.

```
x = 4
y = 9 + x
```

Just like in math, definitions in our programming language can only refer to previously-defined values.


Here are a few more value definitions. Feel free to type them in, and make sure you understand them.

```
x = 5 + 1
y = x * 7
food = "Pizza!"
dot = circle(y, "solid", "red")
```

Defining Values - Explore

Open the <u>Defining Values Starter File</u> and click run.
1) What do you notice?
2) What do you wonder?
Look at the expressions listed below. Think about what you expect each of them to produce. Then, test them out one at a time in the Interactions Area.
• x
• x + 5
• y - 9
• x * y
• Z
• t
• gold-star
• my-name
• swamp
• c
3) What have you learned about defining values?
4) Define at least 2 more variables in the definitions area, click run and test them out. Once you know they're working, record the code you used below.

Defining Values - Chinese Flag

- 1) What image do you see repeated in the flag?
- 2) Highlight or circle all instances of the structure that makes the repeated image in the code below.
- 3) In the code below, highlight or circle all instances of the expression for that image.

```
put-image(
  rotate(40, star(15, "solid", "yellow")),
  120, 175,
  put-image(
    rotate(80, star(15, "solid", "yellow")),
    140, 150,
    put-image(
    rotate(60, star(15, "solid", "yellow")),
    140, 120,
    put-image(
    rotate(40, star(15, "solid", "yellow")),
    120, 90,
    put-image(scale(3, star(15, "solid", "yellow")),
    60, 140,
    rectangle(300, 200, "solid", "red"))))))
```

- 4) Write the code to define a value for the repeated expression.
- 5) Open the Chinese flag starter file (Pyret) and click Run.

Then type china into the interactions area and click Enter.

- 6) Save a copy of the file, and simplify the flag code using the value you defined. Click Run, and confirm that you still get the same image as the original.
- 7) Now change the color of all of the stars to black, in both files. Then change the size of the stars.
- 8) Why is it helpful to define values for repeated images?

Challenge:

- This file uses a function we haven't seen before! What is it?
- Can you figure out its contract? Hint: Focus on the last instance of the function.

Why Define Values?

- 1) Complete the table using the first row as an example.
- 2) Write the code to define the value of sunny .

Original Circle of Evaluation & Code	↑	Use the defined value sunny to simplify!
scale 3 radial-star 30 20 50 "solid" "yellow"	↑	scale 3 sunny
Code: scale(3, radial-star(30, 20, 50, "solid", "yellow"))	1	Code: scale(3, sunny)
frame radial-star 30 20 50 "solid" "yellow"	↑	
Code: frame(radial-star(30, 20, 50, "solid", "yellow"))	1	Code:
text radial-star so "black" 30 20 50 "solid" "yellow"	1	
Code: overlay(text("sun", 30, "black"), radial-star(30, 20, 50, "solid", "yellow"))	1	Code:

3) Test your code in the editor and make sure it produces what you would expect it to.

Which Value(s) Would it Make Sense to Define?

For each of the images below, identify which element(s) you would want to define before writing code to compose the image. Hint: what gets repeated?

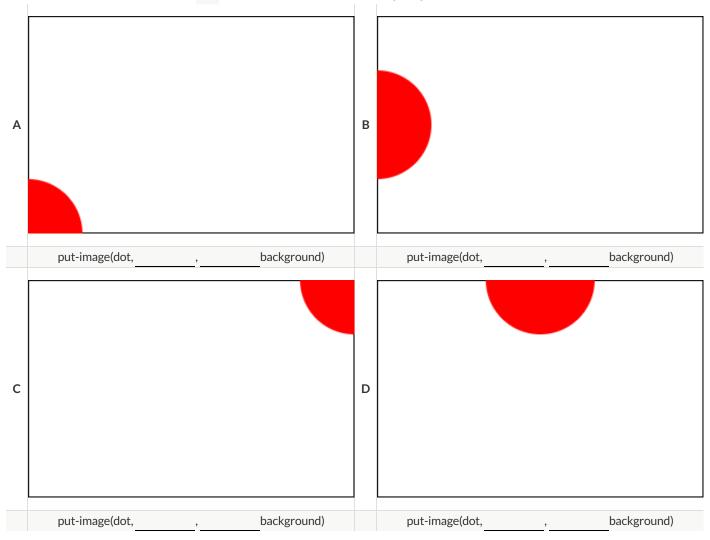
Writing Code using Defined Values

1) On the line below, write the Code to define PRIZE-STAR as a pink, outline star of size 65.

Using the PRIZE-STAR definition from above, draw the Circle of Evaluation and write the Code for each of the exercises. One Circle of Evaluation has been done for you.

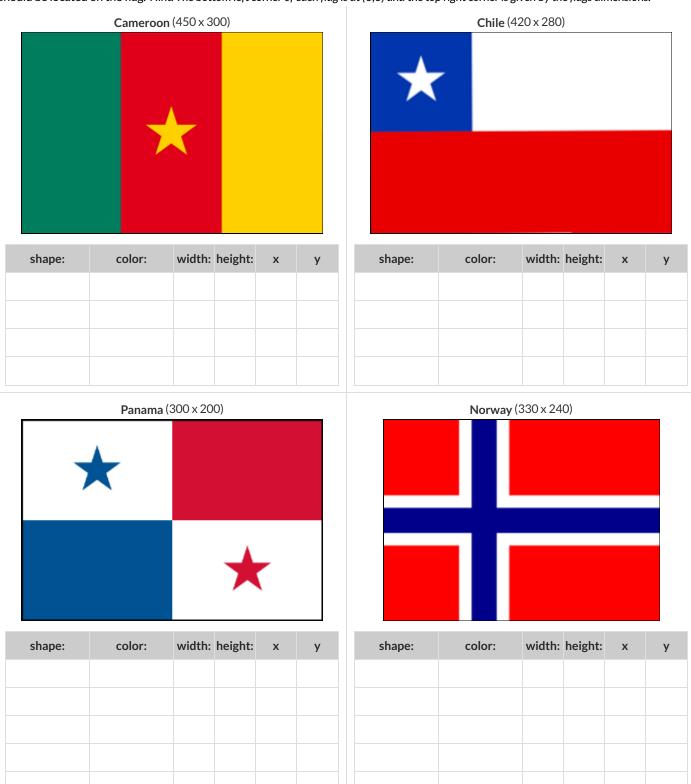
2 The outline of a pink star that is three times the size of the original (using scale)	3 The outline of a pink star that is half the size of the original (using scale)
Circle of Evaluation: Scale	Circle of Evaluation:
Code:	Code:
4 The outline of a pink star that is rotated 45 degrees (It should be the same size as the original.) Circle of Evaluation:	5 The outline of a pink star that is three times as big as the original and has been rotated 45 degrees Circle of Evaluation:
Code:	Code:

Estimating Coordinates


Think of the background image as a sheet of graph paper with the origin (0,0) in the bottom left corner.

The numbers in put-image specify a point on that graph paper, where the center of the top image should be placed.

The width of the rectangle is 300 and the height is 200. The definitions for dot and background are:


```
dot = circle(50, "solid", "red")
background = rectangle(300, 200, "outline", "black")
```

Estimate: What coordinates for the dot would create each of the following images?

Decomposing Flags

Each of the flags below is shown with their width and height. Identify the shapes that make up each flag. Use the flag's dimensions to estimate the dimensions of the different shapes. Then estimate the x and y coordinates for the point at which the center of each shape should be located on the flag. Hint: The bottom left corner of each flag is at (0,0) and the top right corner is given by the flags dimensions.

Notice and Wonder

As you investigate the Game Starter File with your partner, record what you Notice, and then what you Wonder. Remember, "Notices" are statements, not questions.

What do you Notice?	What do you Wonder?

Defining Functions

Functions can be viewed in *multiple representations*. You already know one of them: *Contracts*, which specify the Name, Domain, and Range of a function. Contracts are a way of thinking of functions as a *mapping* between one set of data and another. For example, a mapping from Numbers to Strings:

```
f :: Number -> String
```

Another way to view functions is with *Examples*. Examples are essentially input-output tables, showing what the function would do for a specific input:

In our programming langauge, we focus on the last two columns and write them as code:

```
examples:
    f(1) is 1 + 2
    f(2) is 2 + 2
    f(3) is 3 + 2
    f(4) is 4 + 2
end
```

Finally, we write a formal **function definition** ourselves. The pattern in the Examples becomes *abstract* (or "general"), replacing the inputs with *variables*. In the example below, the same definition is written in both math and code:

```
f(x) = x + 2<br/>fun f(x): x + 2 end
```

Look for connections between these three representations!

- The function name is always the same, whether looking at the Contract, Examples, or Definition.
- The number of inputs in the Examples is always the same as the number of types in the Domain, which is always the same as the number of variables in the Definition.
- The "what the function does" pattern in the Examples is almost the same in the Definition, but with specific inputs replaced by variables.

Matching Examples and Definitions (Math)

Look at each set of examples on the left and circle what is changing from one example to the next.

Then, *match* the examples on the left to the definitions on the right.

Examples: Functions:

X	f(x)
1	2 × 1
2	2 × 2
3	2 × 3

1

A f(x) = x - 3

$$x$$
 $f(x)$
15 $15-3$
25 $25-3$
35 $35-3$

2

 $\mathbf{B} \quad f(x) = 2x$

$$x$$
 $f(x)$
10 $10 + 2$
15 $15 + 2$
20 $20 + 2$

3

c
$$f(x) = 2x + 1$$

$$x f(x)$$
0 3(0) - 2
1 3(1) - 2
2 3(2) - 2

4

D
$$f(x) = 3x - 2$$

$$x f(x)$$
10 2(10) + 1
20 2(20) + 1
30 2(30) + 1

5

E
$$f(x) = x + 2$$

Matching Examples and Function Definitions

Highlight the variables in gt and label them with the word "size".

```
examples:
   gt(20) is
    triangle(20, "solid", "green")
   gt(45) is
    triangle(45, "solid", "green")
end
fun gt(size): triangle(size, "solid", "green") end
```

Highlight and label the variables in the example lists below. Then, using gt as a model, match the examples to their corresponding function definitions.

```
Examples
                                                                              Definition
examples:
 f("solid") is
   circle(8, "solid", "red")
                                                            1
                                                                          A fun f(s): star(s, "outline", "red") end
 f("outline") is
   circle(8, "outline", "red")
end
examples:
 f(2) is 2 + 2
 f(4) is 4 + 4
                                                                          B fun f(num): num + num end
 f(5) is 5 + 5
examples:
 f("red") is circle(7, "solid", "red")
 f("teal") is
                                                            3
                                                                          C fun f(c): star(9, "solid", c) end
   circle(7, "solid", "teal")
end
examples:
 f("red") is star(9, "solid", "red")
 f("grey") is star(9, "solid", "grey")
                                                                          D fun f(s): circle(8, s, "red") end
 f("pink") is star(9, "solid", "pink")
end
examples:
 f(3) is star(3, "outline", "red")
                                                                          E fun f(c): circle(7, "solid", c) end
 f(8) is star(8, "outline", "red")
end
```

Matching Examples and Contracts

Match each set of examples (left) with the contract that best describes it(right).

Examples			Contract
examples: f(5) is 5 / 2 f(9) is 9 / 2 f(24) is 24 / 2 end	1	⋖	# f :: Number -> Number
<pre>examples: f(1) is rectangle(1, 1, "outline", "red") f(6) is rectangle(6, 6, "outline", "red") end</pre>	2	ω	# f :: String -> Image
<pre>examples: f("pink", 5) is star(5, "solid", "pink") f("blue", 8) is star(8, "solid", "blue") end</pre>	ო	U	# f :: Number -> Image
<pre>examples: f("Hi!") is text("Hi!", 50, "red") f("Ciao!") is text("Ciao!", 50, "red") end</pre>	4	۵	# f :: Number, String -> Image
<pre>f(5, "outline") is star(5, "outline", "yellow") f(5, "solid") is star(5, "solid", "yellow") end</pre>	50	ш	# f :: String, Number -> Image

Contracts, Examples & Definitions

					gt		
Dire	ctions : Define a f	unction called	gt , which mak	es solid green t	riangles of whatever siz	ze we want.	
Every	contract has three	e parts					
#	gt	::		Number		->	Image
_	function name			domain			range
	some examples, ti	hen circle and	label what chang	es			
exam	ples:						
	gt	(10) is trian	gle(10, "solid",	, "green")	
	function name	_	input(s)	-	what the function proc	duces	
	gt	_ (20	_) is trian	gle(20, "solid",	-	
end	function name		input(s)		what the function proc	duces	
	the definition six	مر دامات نیمی دهان	amaaa ta all waxw in				
	the definition, giv						
fun	gt function name	(size variable(s)):			
tr	riangle(size,	"solid".					
end							
					DC .		
Dire	ctions : Define a f	unction called	bc . which mak	es solid blue cir	cles of whatever radius	s we want.	
	contract has three		,				
#						->	
· —	function name			domain			range
Write	some examples, ti	hen circle and	label what chang	es			
exam	ples:						
		() is			
	function name	_ `	input(s)	_′	what the function proc	duces	
		() is			
_	function name	_	input(s)	 :	what the function prod	duces	
end							
Write	the definition, giv	ing variable n	ames to all your ir	nput values			
fun		():			
	function name		variable(s)				

what the function does with those variable(s)

What's on your mind?

Solving Word Problems

Being able to see functions as Contracts, Examples or Definitions is like having three powerful tools. These representations can be used together to solve word problems!

- 1) When reading a word problem, the first step is to figure out the **Contract** for the function you want to build. Remember, a Contract must include the Name, Domain and Range for the function!
- 2) Then we write a **Purpose Statement**, which is a short note that tells us what the function *should do*. Professional programmers work hard to write good purpose statements, so that other people can understand the code they wrote!
- 3) Next, we write at least two **Examples**. These are lines of code that show what the function should do for a *specific* input. Once we see examples of at least two inputs, we can *find a pattern* and see which parts are changing and which parts aren't.
- 4) To finish the Examples, we circle the parts that are changing, and label them with a short variable name that explains what they do.
- 5) Finally, we define the function itself! This is pretty easy after you have some examples to work from: we copy everything that didn't change, and replace the changeable stuff with the variable name!

Creating Contracts From Examples

Write the contracts used to create each of the following collections of examples.

```
1)
examples:
  big-triangle(100, "red") is
    triangle(100, "solid", "red")
  big-triangle(200, "orange") is
    triangle(200, "solid", "orange")
end
2)
examples:
  purple-square(15) is
    rectangle(15, 15, "outline", "purple")
  purple-square(6) is
    rectangle(6, 6, "outline", "purple")
end
3)
examples:
  banner("Game Today!") is
   text("Game Today!", 50, "red")
  banner("Go Team!") is
    text("Go Team!", 50, "red")
  banner("Exit") is
    text("Exit", 50, "red")
end
4)
examples:
  twinkle("outline", "red") is
    star(5, "outline", "red")
  twinkle("solid", "pink") is
    star(5, "solid", "pink")
  twinkle("outline", "grey") is
    star(5, "outline", "grey")
end
examples:
  half(5) is 5 / 2
  half(8) is 8 / 2
  half(900) is 900 / 2
end
```

Writing Examples from Purpose Statements

We've provided contracts and purpose statements to describe two different functions. Write examples for each of those functions.

Con	tract and Purpose S	tatement					
Every	contract has three parts						
#	upside-down::		Image		->	Image	
	function name		domain			range	
# Coı	nsumes an image,	and flips it upside dov					
Гус	mulaa		what does the fu	nction do?	_	_	
	mples						
		e and label what changes					
exall	nples:						
				_) is			
	function name	input(s)					
			what the funct	ion produces			
) is	·			
	function name	input(s)					
end			what the funct	ion produces			
Com	ture to and Driverson C	to to anount					
	tract and Purpose S	latement					
	contract has three parts oduct-squared::		Number, Num	ıber	->	Number	
" p. '	function name		domain	1501		range	
# Coi	nsumes two numb	ers and squares their p				3	
			what does the fu	nction do?			
Exa	mples						
Write	some examples, then circle	e and label what changes					
exan	ıples:						
		() is				
_	function name	input(s)		what the function prod	duces	_	
		() is			<u>_</u>	
end	function name	input(s)		what the function prod	duces		

Word Problem: rocket-height

Directions: A rocket blasts off, and is now traveling at a constant velocity of 7 meters per second. Use the Design Recipe to write a function rocket-height, which takes in a number of seconds and calculates the height.

Cont	tract and Purpos	e Statem	ent					
Every o	ontract has three par	rts						
#		::				->		
	function name	-		domain			range	-
#								
				what does the	function do?			
Exan	nples							
Writes	ome examples, then o	circle and la	bel what changes					
exam	ples:							
		() is				
	function name		input(s)		what the function produces			
		() is				
	function name	_	input(s)		what the function produces			
end								
Defi	nition							
Write t	he definition, giving v	ariable nan	nes to all your input val	ues				
fun		():				
	function name		variable(s)					
			V	vhat the function does v	with those variable(s)			
~~~								

# Writing Quality Purpose Statements

3 Keaus	2nd Read: What are the Quantities?		Stronger & Clearer		
No.	1st Read: What is this problem about?	3rd Read: What is a good Purpose Statement?	Stronger	Purpose Statement 1st Revision:	Purpose Statement 2nd Revision:

# The Design Recipe - Direct Variation

**Directions**: Write a function wage, that takes in a number of hours worked and returns the amount a worker will get paid if their rate is \$10.25/hr.

Con	tract and Purpose	Stateme	nt			
	contract has three part		ne -			
#	contract has three part	·			->	
π	function name	•		domain		range
#	.orienori name			domain		range
_				what does the fu	unction do?	
Exa	mples					
Write	some examples, then ci	rcle and lab	el what changes			
exan	nples:					
		(		) is		
	function name	- `	input(s)		what the function produces	
		(	,	) is	·	
_	function name	<u> </u>	input(s)		what the function produces	
end						
Defi	inition					
Write	the definition, giving va	riable name	es to all your input v	alues		_
fun	- •	(	-	):		
	function name		variable(s)			
_						
				what the function does wit	h those variable(s)	
end						
Con	tract and Purpose	Stateme		nber of calories burr	ned	
	contract has three part	S				
#	function name	·		domain	->	range
#	ionenon name			domain		range
_				what does the fu	inction do?	
Exa	mples					
Write	some examples, then ci	rcle and lab	el what changes			
exan	nples:					
		(		) is		
	function name	- `	input(s)		what the function produces	
		(		) is		
_	function name		input(s)		what the function produces	
end						
Defi	inition					
Write	the definition, giving va	riable name	es to all your input v	alues		
fun	- •	(	-	):		
	function name	<del></del>	variable(s)			
		_	-	what the function does wit	h those variable(s)	

# **The Design Recipe (Practice 1)**

**Directions**: Write a function marquee that takes in a message and returns that message in large gold letters.

Cov	ntract and Durnes	o Statore	ont				
	ntract and Purpos		ent				
	contract has three par						
#		:			->		
#	function name			domain		range	
<i>т</i> —				what does the fu	inction dos		
Exa	amples			what does me to			
	e some examples, then o	circle and la	hel what changes				
	e some examples, then t mples:	Lii Cie uliu lai	bei what changes				
CAU	imp ces .	,					
_		_ (		) is			
	function name	,	input(s)	) is	what the function produces		
_	function name	_ '	in n. 4/al	) LS	what the function produces		
end	function name		input(s)		what the function produces		
							_
Det	finition						
	e the definition, giving v	ariable nan	nes to all your input v	values			
fun		(		):			
	function name		variable(s)				
_							
1				what the function does wit	th those variable(s)		
end							
Cor	ntract and Purpos	e Statem		akes iii a fiuifiber and	d returns the cube of that number.		
	contract has three par	TS					
#		<u>:</u>			->		
#	function name			domain		range	
^π —				what does the fu	unction do?		
Exa	amples			what does the re	menorrao.		
	e some examples, then o	rircle and la	hel what changes				
	mples:	en ere arra ra	ber what changes				
CAG	pecs.	,					
		_ (		) is			
	function name	,	input(s)	\	what the function produces		
_		_ (		) is			
end	function name		input(s)		what the function produces		
ena							
Def	finition						
Write	e the definition, giving v	ariable nan	nes to all your input v	values			
fun		(		):			
	function name		variable(s)				

# **The Design Recipe (Practice 2)**

**Directions**: Write a function split-tab that takes in a cost and the number of people sharing the bill and splits the cost equally.

Contract and Purpe	ose Statem	ent			
Every contract has three p	parts				
#	::			->	
function name			domain		range
#			what don't be f	unction do?	
Examples			what does the fo	UNCHON GOS	
Write some examples, the	on circle and la	ahal what changes			
examples:	en circle ana ia	ibei what changes			
examples.	,				
	(		) is		
function name	1	input(s)	) is	what the function produces	
function name	'	input(s)		what the function produces	
end		,(0)			
Definition					
	an contable ::		alua		
Write the definition, giving <b>fun</b>	ng variable nar 1	nes to all your input vi			
function nam	(	variable(s)	):		
Tonchorman	ie	valiable(s)			
Contract and Purpo	ose Statem		that takes in the co	ost of a meal and returns the 15% t	ip for that meal.
Every contract has three p	parts				
#	<u>::</u>			->	
function name #			domain		range
π			what does the fo	unction do?	
Examples			mar accome n		
Write some examples, the examples:	en circle and la	ibel what changes			
	(		) is		
function name	`	input(s)		what the function produces	
	(		) is		
function name		input(s)		what the function produces	
end					
Definition					
Write the definition, givin	ng variable nar	mes to all your input v	alues		
fun	(		):		
function nam	ne	variable(s)			
			what the function does wi	th those variable(s)	

#### **The Design Recipe (Practice 3)**

**Directions**: The Swamp in the City Festival is ordering t-shirts. The production cost is \$75 to set up the silk screen and \$9 per shirt. Write a function min-shirt-price that takes in the number of shirts to be ordered, n, and returns the minimum amount the festival should charge for the shirts in order to break even. (Assume that they will sell all of the shirts.)

Contract and Purpo	ose Statemo	ent					
Every contract has three p	oarts						
#	:				->		
function name #			domain			range	
			what does the f	unction do?			
Examples							
Write some examples, the	n circle and lal	oel what changes					
examples:							
	(		) is				
function name		input(s)	 ) is	what the function produce	es	-	
function name	'	input(s)		what the function produce	es	-	
end		1 1-7					
Definition							
Write the definition, giving	g variable nam	es to all your input valu	es				
fun	(		):				
function nam	ne	variable(s)					
·		wh	nat the function does wi	ith those variable(s)			

#### The Design Recipe (Slope/Intercept 1)

**Directions**: For his birthday, James' family decided to open a savings account for him. He started with \$50 and committed to adding \$10 a week from his afterschool job teaching basketball to kindergartners. Write a function savings that takes in the number of weeks since his birthday and calculates how much money he has saved.

Con	tract and Purpose S	tatement			
	contract has three parts				
#	::			->	
	function name		domain		range
#					
_			what does the fu	nction do?	
Exa	mples				
Write	some examples, then circle	e and label what changes.			
exan	mples:				
		1	) is		
_	function name	input(s)		what the function produces	
	(	(	) is	·	
	function name	input(s)		what the function produces	
end					
Defi	inition				
	the definition, giving varia	hle names to all your innu	ıt values		
fun	the definition, giving varia	(	):		
	function name	variable(s)			
			what the function does wit	h those variable(s)	
end					
is \$4	5 per day and each d tract and Purpose S	riven mile is 15¢.	_	mber of miles driven and returns th	
Every	contract has three parts				
#	::			->	
	function name		domain		range
#					
			what does the fu	ınction do?	
Exa	mples				
	some examples, then circle	e and label what changes.			
exar	mples:				
	(	(	) is		
	function name	input(s)		what the function produces	<del></del>
	(	(	) is		
_	function name	input(s)		what the function produces	
end					
Defi	inition				
	the definition, giving varia	ble names to all your inpu	ıt values		
fun	, ,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	(	):		
	function name	variable(s)			
_			what the function does wit	h thosa yariablo(s)	

#### The Design Recipe (Negative Slope/Intercept)

**Directions**: An Olympic pool holds 660,000 gallons of water. A fire hose can spray about 250 gallons per minute. Write a function pool that takes in the number of minutes that have passed and calculates how much water is still needed to fill it.

Con	tract and Purpos	e Statem	ent				
Every	contract has three par	rts					
#		:			->		
	function name			domain		range	
#				ude ade al a se dise &	water de 0		-
Eva	mples			what does the fu	inction do?		
	some examples, then o	circle and lal	pel what changes				
	nples:	circie aria iai	oei what changes				
<b>-</b> /\d.		,		\			
_	function name	_ (	in m. 14(n)	) is	what the function made as		
	Tunction name	(	input(s)	) is	what the function produces		
_	function name	_ `	input(s)		what the function produces		
end							
Def	inition						
	the definition, giving v	variahle nam	es to all your input vo	alues			
fun	the definition, giving v	(	es to an your input ve	):			
	function name	`	variable(s)				
_				what the function does wit	h those variable(s)		
end							
Con	unt. Write a funct tract and Purpos contract has three par	e Statem		nat takes in the num	ber of months and calculates how		
#	function name			domain		range	
#	ronenen name			doman		range	
				what does the fu	ınction do?		
Exa	mples						
	some examples, then o	circle and lal	oel what changes				
exar	nples:						
		(		) is			
_	function name	<del></del>	input(s)		what the function produces		
		(		) is			
	function name		input(s)		what the function produces		
end							
Def	inition						
Write	the definition, giving v	ariable nam	es to all your input vo	alues			
fun		(		):			
	function name		variable(s)				
				what the function does wit	n those variable(s)		

# The Design Recipe (Geometry - Rectangles)

**Directions**: Write a function lawn-area that takes in the length and width of a rectangular lawn and returns its area.

Contrac	t and Durnage	Statome	nt			
	t and Purpose		mt			
	act has three part	S				
#	:	<u> </u>			->	
	ction name			domain		range
#				what door the fi	unation do?	
Example	25			what does the fu	inclion dos	
		rclo and lab	el what changes			
example		rcie ana iab	ei what changes			
example	<b>.</b>					
		_ (		) is		
fu	ınction name	,	input(s)	\	what the function produces	
-	matica nama	_ (	inn. #/al	) is	what the firsting produces	
end "	ınction name		input(s)		what the function produces	
Definition	on					
	efinition, giving vo	riable name	es to all your input val	ues		
fun		(		):		
	function name		variable(s)			
end			W	hat the function does wit	h those variable(s)	
····						
Contrac	et and Purpose	Stateme	nt .		_	_
	act has three part					
#					->	
	ction name	·		domain		rango
#	clionname			domain		range
				what does the fu	inction do?	
Example	es					
Write some	examples, then ci	rcle and lab	el what changes			
example	es:					
		(		) is		
fı	ınction name	- `	input(s)		what the function produces	
70	menormanie	(	##por(s)	) is	What the foliation produces	
fu	ınction name	- `	input(s)	<u> </u>	what the function produces	
end						
Definition	on					
		out alala :: -:				
fun	eprintion, giving vo	ıı ıapıe name 1	es to all your input val			
ı uıı	function		voricela (a)	<u> </u>		
	function name		variable(s)			
			W	hat the function does wit	h those variable(s)	
_					• •	

#### The Design Recipe (Geometry - Rectangular Prisms)

**Directions**: Write a function rectprism-vol that takes in the length, width, and height of a rectangular prism and returns the Volume of a rectangular prism.

Cont	ract and Purpose S	tatement			
Every c	ontract has three parts				
#	::			->	
	function name		domain		range
#					
			what does the fur	nction do?	
Exan	nples				
Write s	ome examples, then circl	e and label what changes			
exam	ples:				
		(	) is		
	function name	input(s)	·	what the function produces	
		(	) is		
	function name	input(s)		what the function produces	
end					
D <u>efi</u> i	nition				
		able names to all your input	values		
fun	, , , , , ,	(	):		
	function name	variable(s)			
			what the function does with	those variable(s)	
end					
	ract and Purpose S contract has three parts				
#	::			->	
	function name		domain		range
#					
E	lea		what does the fur	nction do?	
	nples				
		e and label what changes			
exam	ples:				
		(	) is		
	function name	input(s)			
		1	what the functi ) is	on produces	
_	function name	input(s)	, LS		
	ionenon name	ii ibai (s)			
			what the functi	on produces	
end					
Defi	nition				
		able names to all various	values		
	ne aeținition, giving varia	able names to all your input			
fun	function	( ) contains (-)	):		
	function name	variable(s)			

what the function does with those variable(s)

# The Design Recipe (Geometry - Circles)

**Directions**: Write a function circle-area-dec that takes in a radius and uses the decimal approximation of pi (3.14) to return the area of the circle.

Cont	ract and Purpose	Stateme	nt			
	ontract has three parts					
#	•	•			->	
<i>"</i> —	function name			domain	·_	range
#						
				what does the fu	ınction do?	_
Exam	nples					
	ome examples, then cir	cle and lab	el what changes			
exam	ples:					
		(		) is		
	function name	-	input(s)		what the function produces	
		(		) is		
	function name	<u> </u>	input(s)		what the function produces	
end						
Defir	nition					
Write t	he definition, giving va	riable name	es to all your input vo	alues		_
fun		(	, ,	):		
•	function name		variable(s)	·		
				what the function does wit	h those variable(s)	
end						
Cont	nference of the circ ract and Purpose ontract has three parts 	Stateme	nt		->	
"	function name			domain		range
#						G
				what does the fu	ınction do?	
Exam	nples					
Write s	ome examples, then cir	cle and lab	el what changes			
exam	ples:					
		(		) is		
	function name	`	input(s)		what the function produces	
		(	1 1-7	) is	, , , , , , , , , , , , , , , , , , , ,	
	function name		input(s)	<del></del>	what the function produces	
end						
Defir	nition					
	he definition, giving va	riahle name	es to all your input w	alues		
fun		(	, our mpat ve	):		
~!!	function name	`	variable(s)			
	<del>-</del>		1-7			
				what the function does wit	h thoso variablo(s)	

#### **The Design Recipe (Geometry - Cylinders)**

**Directions**: Write a function circle-area that takes in a radius and uses the fraction approximation of pi  $(\frac{22}{7})$  to return the area of the circle.

Con	tract and Purpos	se Statem	ent			
Every	contract has three pa	rts				
#		::			->	
	function name			domain		range
#					matter de 2	
Evar	mples			what does the fo	unction do?	
	some examples, then	circle and la	hal what changes			
	iples :	circle and la	bei what changes			
CAUII	iptes.	,				
		_ (		) is		
	function name	(	input(s)	) is	what the function produces	
	function name	_ `	input(s)		what the function produces	
end						
Defi	nition					
		variahle nar	nes to all your input va	alues		
fun	the definition, giving v	(	nes to an your input va	):		
. u	function name	'	variable(s)			
				what the function does wi	th those variable(s)	
end						
Con	tract and Purpos		ent			
	contract has three pa					
#	function name	- <del>:</del>		domain	->_	range
#	Toricion hame			domain		range
				what does the fo	unction do?	
Exar	mples					
Write	some examples, then	circle and la	bel what changes			
exam	ıples:					
		(		) is		
_	function name	_ `	input(s)	·	what the function produces	<del></del>
		(		) is		
_	function name		input(s)		what the function produces	
end						
Defi	nition					
Write	the definition, giving v	variable nar	nes to all your input va	ılues		
fun		(		):		
	function name		variable(s)			
				what the function does wit	th those variable(s)	

# **Danger and Target Movement**

**Directions**: Use the Design Recipe to write a function update-danger, which takes in the danger's x- and y-coordinate and produces the next x-coordinate, which is 50 pixels to the left.

	tract and Purpose S				
Every o	contract has three parts.				
#	::				->
#	function name		do	omain	range
			what o	does the function do?	
Exar	mples				
Writes	some examples, then circ	le and label what changes			
exam	ples:				
		(	) is		
	function name	input(s)	,	what the function produces	
		(	) is	·	
_	function name	input(s)		what the function produces	
end					
Defi	nition				
		able names to all your input values			
fun	ine definition, giving van	(	):		
ıuıı	function name	variable(s)	_'`		
	Tonellorrhame	randole (3)			
		what th	e functio	on does with those variable(s)	
end					
Dire	ctions : Use the Des	sign Recipe to write a function	upda	te-target, which takes in the target	s x- and y-coordinate and produces the
		is 50 pixels to the right.			
Conf	tract and Purpose S	Statement			
Every o	contract has three parts.				
#	::				->
	function name		do	omain	range
#					
			what o	does the function do?	
Exar	nples				
Writes	some examples, then circ	le and label what changes			
exam	ples:				
		(	) is		
_	function name	input(s)	,	what the function produces	
			) is	·	
_	function name	input(s)		what the function produces	<del></del>
end					
Defi	nition				
		able names to all very beautiful			
	.ne aejmition, giving vari	able names to all your input values	١.		
fun	function -		_):		
	function name	variable(s)			
		what th	ne functio	on does with those variable(s)	

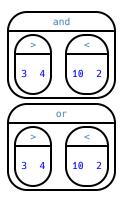
#### **Problem Decomposition**

- Sometimes a problem is too complicated to solve all at once. Maybe there are too many variables, or there is just so much information that we can't get a handle on it!
- We can use **Problem Decomposition** to break those problems down into simpler pieces, and then work with the pieces to solve the whole. There are two strategies we can use for decomposition:
  - **Top-Down** Start with the "big picture", writing functions or equations that describe the connections between parts of the problem. Then, work on defining those parts.
  - **Bottom-Up** Start with the smaller parts, writing functions or equations that describe the parts we understand. Then, connect those parts together to solve the whole problem.
- You may find that one strategy works better for some types of problems than another, so make sure you're comfortable using either one!

# The Design Recipe: Revenue & Cost

**Directions**: Use the Design Recipe to write a function revenue, which takes in the number of glasses sold at \$1.75 apiece and calculates the total revenue.

Contract and Purpos	e Statement			
Every contract has three par				
#	••		->	
function name	··	domain		range
#		domain		range
		what does the fu	ınction do?	
Examples				
Write some examples, then o	circle and label what changes			
examples:	<b>0</b>			
	1	\ :-		
	_ (	) is		
function name	input(s)	) is	what the function produces	
function name	(		what the function produces	<u></u>
end	inputsi		wital the folicitori produces	
Definition				
	ariable names to all your input v			
fun	(	):		
function name	variable(s)			
and		what the function does wit	h those variable(s)	
end				
materials if each glass  Contract and Purpos  Every contract has three par	e Statement			
#			->	
function name	···	domain		range
#		GOTTIGHT		range
		what does the fu	unction do?	
Examples				
Write some examples, then o	circle and label what changes			
examples:	· ·			
	1	\ :-		
	_ (	) is		
function name	input(s)	) is	what the function produces	
function name	input(s)		what the function produces	<u></u>
end	προτις		what the folicilott produces	
Definition				
	ariable names to all your input v	alues		
fun	(	):		
function name	variable(s)			
-		what the function does wit	h those variable(s)	


# **Word Problem: profit**

**Directions**: Use the Design Recipe to write a function profit that calculates total profit from glasses sold, which is computed by subtracting the total cost from the total revenue.

Contract and Purp	ose Statem	nent				
Every contract has three	parts					
#	:				->	
function name			domain		<u> </u>	range
#						
			what does the	function do?		
Examples						
Write some examples, th	en circle and la	bel what changes				
examples:						
	(		) is			
function name	<del></del>	input(s)		what the function produces	S	
	(		) is			
function name		input(s)		what the function produces	S	
end						
Definition						
Write the definition, givin	ng variable nar	mes to all your input val	lues			
fun	(		):			
function nar	ne	variable(s)				
		٧	what the function does w	vith those variable(s)		
and						

#### **Inequalities**

- Sometimes we want to *ask questions* about data. For example, is x greater than y? Is one string equal to another? These questions can't be answered with a Numbers. Instead, they are answered with a new data type called a **Boolean**.
- Video games use Booleans for many things: asking when a player's health is equal to zero, whether two characters are close enough to bump into one another, or if a character's coordinates put it off the edge of the screen.
- A Boolean value is either true or false. Unlike Numbers, Strings, and Images, Booleans have only two possible values.
- You already know some functions that produce Booleans, such as < and >! Our programming language has them, too: 3 < 4, 10 > 2, and -10 == 19.
- We also have ways of writing Compound Inequalities, so we can ask more complicated questions using the and and or functions.
  - o (3 > 4) and (10 < 2) translates to "three is greater than four *and* ten is less than two". This will evaluate to false, since the and function requires that both sub-expressions be true.
  - o (3 > 4) or (10 < 2), which translates to "three is greater than four *or* ten is less than two". This will evaluate to true, since the **or** function only requires that one sub-expression be true.
- The Circles of Evaluation work the same way with Booleans that they do with Numbers, Strings and Images:



# **Boolean Functions**

Explore the functions in the <i>Booleans Starter File</i> . What characteristics define them as Booleans?					
Fill in the blanks below so that each of the five functions returns true					
1) is-odd()					
2) is-even()					
3) is-less-than-one( )					
4) is-continent()					
5) is-primary-color(					
Fill in the blanks below so that each of the five functions returns false					
6) is-odd( )					
7) is-even( )					
8) is-less-than-one( )					
9) is-continent ( )					
10) is-primary-color( )					

#### **Simple Inequalities**

Each inequality expression in the first column contains a number.

Decide whether or not that number is a solution to the expression and place it in the appropriate column.

Then identify 4 solution and 4 non-solution values for x.

- Solutions will make the expression true .
- Non-Solutions will make the expression false .

Challenge yourself to use negatives, positives, fractions, decimals, etc. for your x values.

Expression	4 solutions that evaluate to true	4 non-solutions that evaluate to false
x > 2		
x <= -2		
x < 3.5		
x >= -1		
x > -4		
x <> 2		

x > -4			
x <> 2			
1) For which inequalities was the	number from the expression part of t	the solution?	
2) For which inequalities was the	number from the expression not part	t of the solution?	
3) For which inequalities were the	solutions on the left end of the num	ber line?	
4) For which inequalities were the	solutions on the right end of the nu	mber line?	

# **Converting Circles of Evaluation to Code**

For each Circle of Evaluation on the left-hand side, write the code for the Circle on the right-hand side

	Circle of Evaluation	Code
1	> + 9 4 5	
2	and < 5 10 10 15	
3	or  == == yum "apple" yum "banana"	
4	>=  string-length "My Game"  6	
5	and and company or analysis of company or and company or analysis of company or and company or analysis of company or and company or analysis of company or	

# Compound Inequalities — Practice

Create the Circles of Evaluation, then convert the expressions into code in the space provided.
1) 2 is less than 5, and 0 is equal to 6
What will this evaluate to?
2) 6 is greater than 8, or -4 is less than 1
What will this evaluate to?
3) The String "purple" is the same as the String "blue", and 3 plus 5 equals 8
What will this evaluate to?
What will this evaluate to?
4) Write the contracts for <b>and</b> & <b>or</b> in your Contracts page.

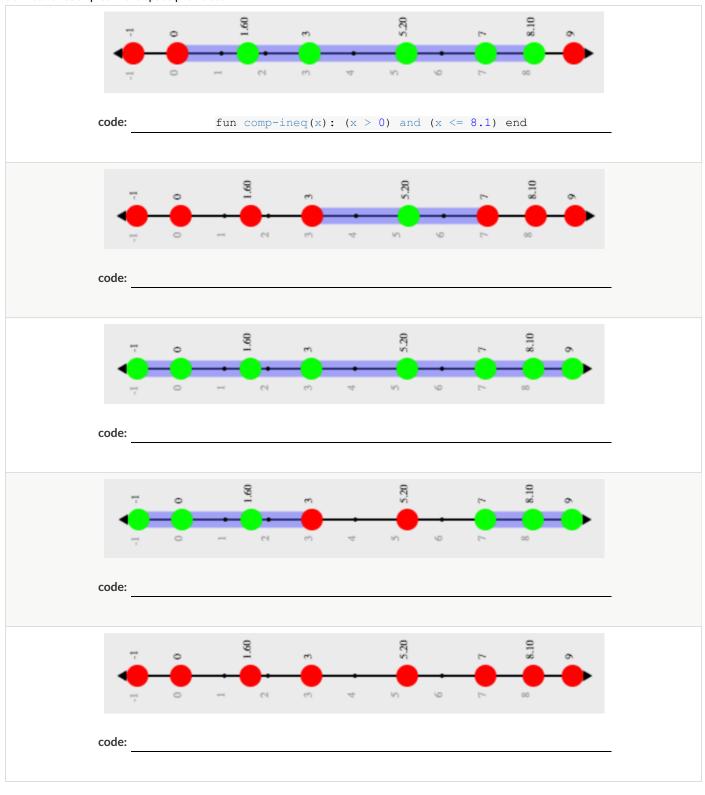
#### **Compound Inequalities: Solutions & Non-Solutions**

For each Compound Inequality listed below, identify 4 solutions and 4 non-solutions. If there are **no solutions** or the solution set includes **all real numbers** you can write that instead of making a list.

- Solutions for intersections, which use and will make both of the expressions true.
- Solutions for unions, which use or will make at least one of the expressions true.

Pay special attention to the numbers in the sample expression! Challenge yourself to use negatives, positives, fractions, decimals, etc. for your x values.

The first two have been done for you - Answers will vary!


Expression	4 solutions that evaluate to true	4 non-solutions that evaluate to false
x > 5 and $x < 15$	6, 9.5, 12, 14.9	-2, 5, 15, 16.1
x > 5  or  x < 15	All real numbers	No non-solutions
$x \leftarrow -2$ and $x > 7$		
x <= -2  or  x > 7		
x < 3.5 and $x > -4$		
x < 3.5  or  x > -4		
$x \ge -1$ and $x > -5$		
x >= -1  or  x > -5		
x < -4 and $x > 2$		

<ol> <li>Could there ever be a union with no solutions? Explain your thinking</li> </ol>
------------------------------------------------------------------------------------------

2) Could there ever be an intersection whose solution is all real numbers? Explain your thinking.

#### **Compound Inequality Functions**

Each of the plots below was generated using the code inequality(comp-ineq, [list: -1, 0, 1.6, 3, 5.2, 7, 8.1, 9]). With the exception of the example, each plot below was defined using the numbers 3 and 7. Write the code for how comp-ineq was defined for each plot in the space provided.



## Sam the Butterfly

Open the <u>"Sam the Butterfly"</u> starter file and press "Run". (Hi, Sam!)
Move Sam around the screen using the arrow keys.
1) What do you notice about the program?
2) What do you wonder?
<ul><li>3) What do you see when Sam is at (0,0)? Why is that?</li><li>4) What changes as the butterfly moves left and right?</li></ul>
Sam is in a 640 × 480 yard. Sam's mom wants Sam to stay in sight.
How far to the left and right can Sam go and still remain visible?
Use the new inequality functions to answer the following questions with code:
5) Sam hasn't gone off the left edge of the screen as long as
6) Sam hasn't gone off the right edge of the screen as long as
7) Use the space below to draw Circles of Evaluation for these two expressions:

## **Left and Right**

**Directions**: Use the Design Recipe to write a function is-safe-left, which takes in an x-coordinate and checks to see if it is greater than -50.

Cont	tract and Purpos	e Statem	ent						
Every o	ontract has three par	ts							
#		::					->		
	function name				domain		<u> </u>	range	<u>—</u>
#									
F	and a			١	vhat does t	the function do?			
	nples								
	ome examples, then	circle and la	bel what changes						
exam	ples:								
		(		)	is				
	function name	_ ,	input(s)			what the function produces			
		_ (		)	is				
end	function name		input(s)			what the function produces			
Defi	nition								
	he definition, giving v	ariable nan	nes to all your input val	ues					
fun		(		)	:				
	function name		variable(s)						
end			W	nat the tu	unction doe	es with those variable(s)			
690.	tract and Purpos			_	_	- r i ght , which takes in an x-coor	_		_
			ent						
	contract has three par								
#	for all an areas	:			-1		>		_
#	function name				domain			range	
<i>"</i> —				\	vhat does t	the function do?			
Exan	nples								
	ome examples, then o	circle and la	bel what changes						
	ples:		· ·						
	•	1		١	is				
	function name	_ '	input(s)	/		what the function produces			
	Toricilori Harrie	(	iiipoi(s)	)	is	what the folicitor produces			
	function name	_ `	input(s)			what the function produces			
end						·			
Defi	nition								
		ariable nen	nes to all your input val	uoc					
fun	rie aejiriitiori, giving V	raniable nan 1	nes to an your iriput Vall		):				
ıuli	function name	'	variable(s)		•				
	ronellon name		variabie(s)						
			\.	that the fi	inction doe	es with those variable(s)			

end

## Word Problem: is-onscreen

**Directions**: Use the Design Recipe to write a function is-onscreen, which takes in an x-coordinate and checks to see if Sam is safe on the left while also being safe on the right.

Con	tract and Purpose Stat	tement				
Every	contract has three parts					
#	::			->		
	function name		domain		range	
#						
			what does the function do?			
Exar	mples					
Writes	some examples, then circle a	nd label what changes				
exam	ıples:					
	(		) is			
	function name	input(s)				
			what the function produces			
	(		) is			
	function name	input(s)				
			what the function produces			
end						
Defi	nition					
Write t	the definition, giving variable	e names to all your input val	Jes			
fun	(		):			
	function name	variable(s)				
		w	hat the function does with those variable	e(s)	_	_
end						

#### **Piecewise Functions**

- Sometimes we want to build functions that act differently for different inputs. For example, suppose a business charges \$10/pizza, but only \$5 for orders of six or more. How could we write a function that computes the total price based on the number of pizzas?
- In math, **Piecewise Functions** are functions that can behave one way for part of their Domain, and another way for a different part. In our pizza example, our function would act like cost(pizzas) = 10 * pizzas for anywhere from 1-5 pizzas. But after 5, it acts like cost(pizzas) = 5 * pizzas.
- Piecewise functions are divided into "pieces". Each piece is divided into two parts:
  - 1. How the function should behave
  - 2. The domain where it behaves that way
- Our programming language can be used to write piecewise functions, too! Just as in math, each piece has two parts:

Piecewise functions are powerful, and let us solve more complex problems. We can use piecewise functions in a video game to add or subtract from a character's x-coordinate, moving it left or right depending on which key was pressed.

#### Welcome to Alice's Restaurant!

Alice has hired you to improve some code used at the restaurant. The code we'll be improving on is shown below.

Read through the code line-by-line with your partner before writing down your observations in the tables below.

```
# cost :: String -> Number
# given a item, produce the cost of that item
fun cost(item):
    ask:
    | item == "hamburger" then: 6.0
    | item == "onion rings" then: 3.5
    | item == "fried tofu" then: 5.25
    | item == "pie" then: 2.25
    | otherwise: "Sorry, that's not on the menu!"
    end
end
```

1) I notice	2) I wonder
3) Familiar things I see in the code	4) Unfamiliar things I see in the code

### Alice's Restaurant - Explore

Alice's code has some new elements we haven't seen before, so let's experiment a bit to figure out how it works! **Open the** <u>Alice's</u>

Restaurant starter file, click "Run", and try using the cost function in the Interactions window.

1) What does cost ("hamburger") evaluate to?		
2) What does cost ("pie") evaluate to?		<u> </u>
3) What if you ask for cost ("fries")?		_
4) Explain what the function is doing in your own w	vords.	
5) What is the function's name?	Domain?	Range?
6) What is the name of its variable?		
7) Alice says onion rings have gone up to \$3.75. Ch	ange the cost function t	o reflect this.
8) Try adding menu items of your own. What's you	r favorite?	
9) For an unknown food item, the function produce	es the String "That's no	t on the menu!" Is this a problem? Why or why not?
10) Suppose Alice wants to calculate the price of a	hamburger, including a 5%	sales tax . Draw a Circle of Evaluation for the expression
below.		

#### **Word Problem: order**

**Directions**: Alice's Restaurant has hired you as a programmer. They offer the following menu items: hamburger (\$6.00), onion rings (\$3.50), fried tofu (\$5.25) and pie (\$2.25). Write a function called **order** which takes in the name of a menu item and outputs the price of that item

tnat	item.							
Con	ntract and Purpo	se Statem	ent					
Every	contract has three po	arts						
#		::				->		
	function name			C	lomain		range	-
#								_
Fva	mples			wnai	does the funct	ion do?		
	some examples, then	circle and la	hel what changes					
	mples:	en ele ana la	bei What enanges					
	•	1		) is				
_	function name	_ '	input(s)			what the function produces		
	Tonellonname	(	ii ipor(s)	) is		what the fortellori produces		
_	function name		input(s)			what the function produces		
		(		) is				
	function name	1	input(s)	) is		what the function produces		
_	function name	_ '	input(s)			what the function produces		
end	remementaline		,55.(5)			ma me remem predeces		
Def	inition							
		variable nan	nes to all your input va	lues				
fun		(	ies to un your imput vu	):				
	function name	`—	variable(s)					
as	sk:							
- 1					then:			<u> </u>
1					then:			
•					. <u>-</u>			_
I	-				then:			_
I					then:			_
ı	otherwise:				·			
	nd							
end								

## Word Problem: update-player

**Directions**: The player moves up and down by 20 pixels each time. Write a function called update-player, which takes in the player's x- and y-coordinate and the name of the key pressed ("up" or "down"), and returns the new y-coordinate.

Contract and Pu	rpose Statem	ent					
Every contract has thr	ee parts						
#	::				->		
function name			dom	nain		range	
#							
			what do	es the function do?			
Examples							
Write some examples,	then circle and la	ıbel what changes					
examples:							
	(		) is				
function name	е	input(s)		what the function proc	duces		
	(		) is				
function name	e ,	input(s)	\ .	what the function proc	duces		
	(		) is _				
function name	e <i>(</i>	input(s)	) is	what the function proc	duces		
function name	\	input(s)		what the function proc	ducas	<del></del>	
end		""POT(S)		what the folicitor proc	,occ3		
Definition							
	iving variable nar	mes to all your input val	lues				
fun	(	nes to an your input val	):				
function n	name	variable(s)					
ask:		,					
1			t	hen:			
<u> </u>			t	hen:			
l othoruica							
otherwise	<u> </u>						
end							
end							

#### **Challenges for update-player**

For each of the challenges below, see if you can come up with two EXAMPLEs of how it should work!

1) Warping - Program one key to "warp" the player to a set location, such as the center of the screen.

2) Boundaries - Change update-player such that PLAYER cannot move off the top or bottom of the screen.

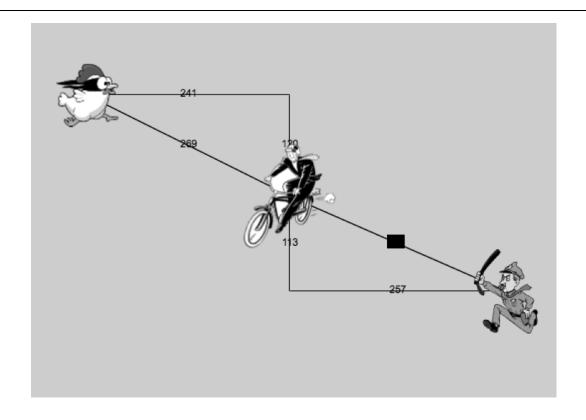
3) **Wrapping** - Add code to update-player such that when PLAYER moves to the top of the screen, it reappears at the bottom, and vice versa.

4) Hiding - Add a key that will make PLAYER seem to disappear, and reappear when the same key is pressed again.

<pre>examples:    update-player(</pre>	) is
update-player( <b>end</b>	) <b>is</b>

### **Word Problem: line-length**

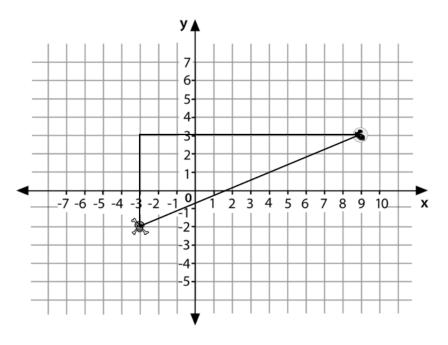

**Directions**: Write a function called 'line-length', which takes in two numbers and returns the **positive difference** between them. It should always subtract the smaller number from the bigger one. If they are equal, it should return zero.


Contract and Purpose Staten	nent						
Every contract has three parts							
# ::					->		
function name		domain	1		<del></del>	range	
#							_
		what does	the function	do?			
Examples							
Write some examples, then circle and l	abel what changes						
examples:							
line-length (	10, 5	) <b>is</b> 10	- 5				
function name	input(s)			what the function produces			
line-length (	2, 8	) <b>is</b> 8	- 2				
function name	input(s)			what the function produces			
end							
Definition							
Write the definition, giving variable na	mes to all your input valu	es					
fun (		):					
function name	variable(s)						
ask:							
l		the	en:				_
I		the	en:				
end							_

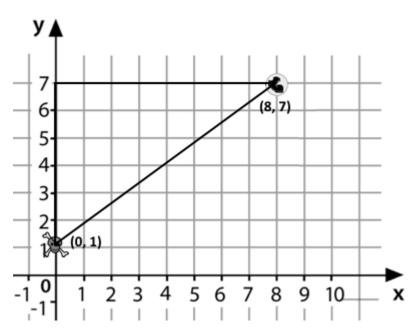
end

### **Writing Code to Calculate Missing Lengths**

In each of the game screenshots below, one of the distance labels has been hidden. Write the code to generate the missing distance on the line below each image. Hint: Remember the Pythagorean Theorem!







#### **Distance on the Coordinate Plane**

Distance between the pyret and the boot:

num-sqrt(num-sqr(line-length(9, -3)) + num-sqr(line-length(3, -2)))

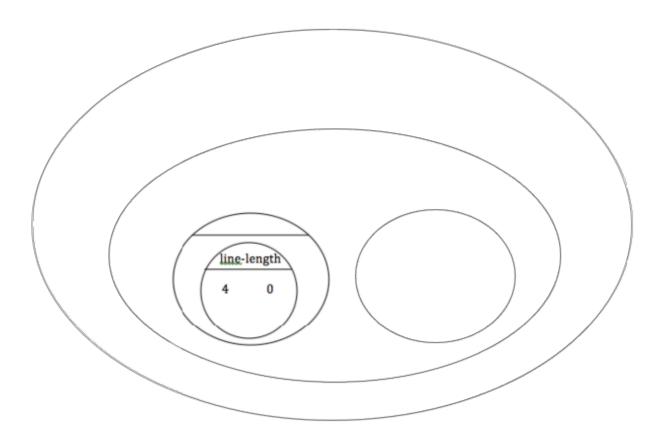


Explain how the code works.



Now write the code to find the distance between this boot and pyret.

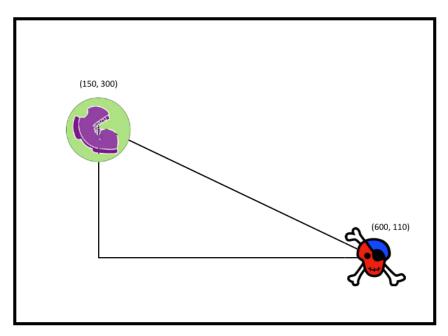
#### The Distance Between (0, 2) and (4, 5)


The distance between  $x_1$  and  $x_2$  is computed by line-length (x1, x2). The distance between  $y_1$  and  $y_2$  is computed by line-length (y1, y2). Below is the equation to compute the hypotenuse of a right triangle with those amount for legs:

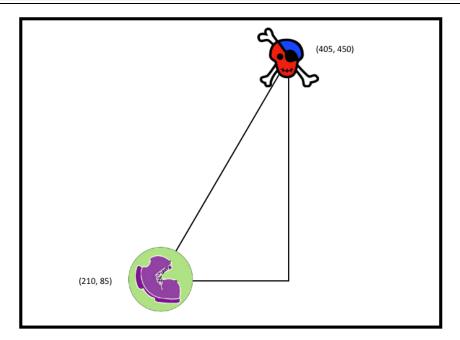
$$\sqrt{line\text{-}length(x_2,x_1)^2 + line\text{-}length(y_2,y_1)^2}$$

Suppose your player is at (0, 2) and a character is at (4, 5). What is the distance between them? With your pencil, label which numbers represent  $x_1, y_1, x_2$  and  $y_2$ . The equation to compute the distance between these points is:

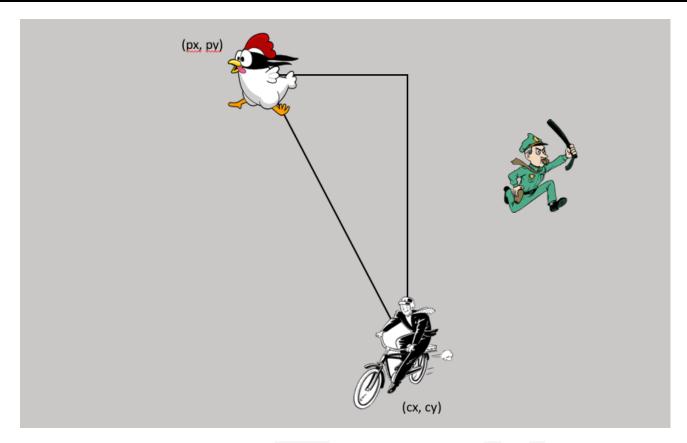
$$\sqrt{line\text{-}length(4,0)^2 + line\text{-}length(5,2)^2}$$


1. Translate the expression above, for (0,2) and (4,5) into a Circle of Evaluation below.




2. Convert the Circle of Evaluation to Code below.

#### **Distance From Game Coordinates**


For each of the game screenshots, write the code to calculate the distance between the indicated characters. *The first one has been done for you.* 

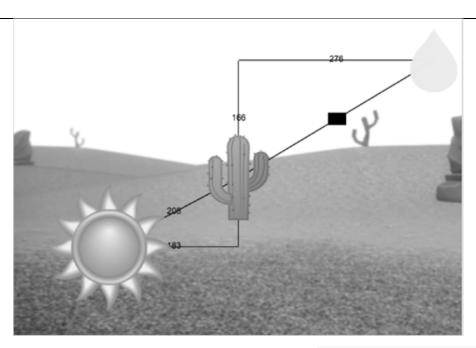


num-sqrt(num-sqr(line-length(600, 150)) + num-sqr(line-length(110, 300)))



## Distance (px, py) to (cx, cy)




**Directions**: Use the Design Recipe to write a function distance, which takes in FOUR inputs: px and py (the x- and y-coordinate of the Player) and cx and cy (the x- and y-coordinates of another character), and produces the distance between them in pixels.

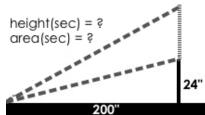
Con	tract and Purpos	e Statem	ent					
Every	contract has three par	ts					<u> </u>	
#		::				->		
-	function name	-		domaii	in		range	
#								
_				what does	the function do?			
Exar	nples							
Writes	some examples, then o	circle and la	bel what changes					
exam	ples:							
		(		) is				
	function name	_ `	input(s)					
				what the	e function produces			
		(		) is				
	function name		input(s)					
				what the	e function produces			
end								
Defi	nition							
Write t	the definition, giving v	ariable nan	nes to all your input va	lues			<u> </u>	
fun		(		):				
	function name		variable(s)					
			,	what the function do	nes with those variable(s)			

end

#### **Comparing Code: Finding Missing Distances**

For each of the game screenshots below, the math and the code for computing the covered distance is shown. Notice what is similar and what is different about how the top and bottom distances are calculated. Think about why those similarities and differences exist and record your thinking.




$$\sqrt{166^2 + 276^2}$$



$$\sqrt{276^2 - 194^2}$$

#### Top Down / Bottom Up

A retractable flag pole starts out 24 inches tall, and grows taller at a rate of 0.6 in/sec. An elastic is anchored 200 inches from the base and attached to the top of the pole, forming a right triangle. Using a top-down or bottom-up strategy, define functions that compute the *height* of the pole and the *area* of the triangle after a given number of seconds.



Directions: Define your first function (height or area) here. **Contract and Purpose Statement** Every contract has three parts... range what does the function do? Write some examples, then circle and label what changes... examples: end Definition Write the definition, giving variable names to all your input values... fun function name what the function does with those variable(s) end Directions: Define your second function (height or area) here. **Contract and Purpose Statement** Every contract has three parts... function name domain what does the function do? Write some examples, then circle and label what changes... examples: what the function produces input(s) what the function produces end Definition Write the definition, giving variable names to all your input values... fun function name variable(s)

## **Word Problem: is-collide**

**Directions**: Use the Design Recipe to write a function is-collide, which takes in the coordinates of two objects and checks if they are close enough to collide.

Con	tract and Purpo	ose Statem	ent					
Every	contract has three p	oarts						
#		::				->		
	function name	_		domain			range	•
#								
				what does the t	function do?			
Exar	mples							
Write	some examples, the	n circle and la	bel what changes					
exam	ıples:							
		(		) is				
_	function name	<del></del>	input(s)	<u> </u>	what the function produces			
		(		) is				
	function name		input(s)					
				what the fund	ction produces			_
end					·			
Defi	nition							
Write	the definition, givin	g variable nan	nes to all your input va	alues				
fun		(		):				
	function nam	e	variable(s)					
_				what the function does w	rith those variable(s)			

end

Contracts tell us how to use a function. For example: ellipse :: (Number, Number, String, String) -> Image tells us that the name of the function is ellipse, it takes four inputs (two Numbers and two Strings), and it evaluates to an Image. From the contract, we know ellipse (100, 50, "outline", "red") will evaluate to an Image.

Name		Domain	Range
# num-sqr	••	Number>	Number
num-sqr(9)			
# num-sgrt	::	Number ->	Number
num-sqrt(25)			
# string-length	::	String>	Number
string-length("Rainbow"}			
# string-contains	::	String, String	Boolean
string-contains("catnap", "cat")	( ₁₁ )		
# triangle	::	Number, String, String>	Image
triangle(80, "solid", "darkgreen")	en")		
# star	::	^-	
# circle	::	<b>^</b>	
# square	::	^	
# rectangle	::	^	

Contracts tell us how to use a function. For example: ellipse :: (Number, Number, String, String) -> Image tells us that the name of the function is ellipse, it takes four inputs (two Numbers and two Strings), and it evaluates to an Image . From the contract, we know ellipse (50, 100, "solid", "teal") will evaluate to an Image .

Name	Domain	Range
# rhombus	::	
# ellipse	·:	
# text	::	
# regular-polygon	**	
# right-triangle	::	
# isosceles-triangle	**	
# radial-star	**	
; star-polygon		
; triangle-sas		

Contracts tell us how to use a function. For example: ellipse :: (Number, Number, String, String) -> Image tells us that the name of the function is ellipse, it takes four inputs (two Numbers and two Strings), and it evaluates to an Image . From the contract, we know ellipse (100, 50, "solid", "fuchsia") will evaluate to an Image .

Name	Domain Range
# triangle-asa	←
# image-url	↑ ::
# scale	↑
# rotate	↑ ::
# overlay	↑ ::
# put-image	↑ ·
# flip-horizontal	↑ ::
# flip-vertical	
# above	↑ ::

Contracts tell us how to use a function. For example: ellipse :: (Number, Number, String, String) -> Image tells us that the name of the function is ellipse, it takes four inputs (two Numbers and two Strings), and it evaluates to an Image . From the contract, we know ellipse (100, 50, "outline", "darkgreen") will evaluate to an Image .

Name	Domain Range	ıge
# beside	<b>^</b>	
# or		
# and		
# #	↑ ::	



These materials were developed partly through support of the National Science Foundation, (awards 1042210, 1535276, 1648684, and 1738598), and are licensed under a Creative Commons 4.0 Unported License. Based on a work at www.BootstrapWorld.org. Permissions beyond the scope of this license may be available by contacting schanzer@BootstrapWorld.org.