
Piecewise Functions and Conditionals

(Also available in WeScheme)

Students learn how to define a function so that it behaves differently depending on the input.

Lesson Goals Students will be able to:

Explain what a piecewise function - or conditional  - is.

Give examples of inputs and outputs of a given piecewise function.

Student-Facing

Lesson Goals

Let’s learn how piecewise functions work in math.

Let’s learn how conditionals work in programming.

Prerequisites Simple Data Types

Contracts

Simple Inequalities

Materials PDF of all Handouts and Page

Red Shape Starter File

Lesson Slides

Printable Lesson Plan (a PDF of this web page)

Lesson Slides

Key Points for

the Facilitator

The Design Recipe looks a bit different for piecewise, or conditional,

functions. Check that students are taking time to write examples and circle

what is changing.

Glossary
conditional ::  a code expression made of questions and answers

contract ::  a statement of the name, domain, and range of a function

design recipe ::  a sequence of steps that helps people document, test, and write functions

domain ::  the type or set of inputs a function expects, i.e., the independent variable(s) that govern the

output of the function

function ::  a relation from a set of inputs to a set of possible outputs, where each input is related to

exactly one output

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/piecewise-functions-conditionals-wescheme/index.shtml
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/simple-data-types/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities1-simple/index.shtml?pathway=false
javascript:downloadLessonPDFs(false)
https://code.pyret.org/editor#share=1QW7KtZHbAPdP1vjyI9-jXx7pSXrwzWJN
https://docs.google.com/presentation/d/1C3VEquvGumTbVKLTs-9QzHglSkwsKMckC8_YR-zi6JA/
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/piecewise-functions-conditionals/index.pdf
https://docs.google.com/presentation/d/1C3VEquvGumTbVKLTs-9QzHglSkwsKMckC8_YR-zi6JA/


piecewise function ::  a function that computes different expressions based on its input

purpose statement ::  a concise, detailed description of what a function does with its inputs

range ::  the type or set of outputs that a function produces, i.e., the dependent variable(s)



Intro to Piecewise Functions

Overview
Students are introduced to piecewise functions through a kinesthetic activity, and then brainstorm

real world applications of piecewise functions.

Decide whether this activity would work better for your class if students stand up and spread out

around the classroom or stay in their seats.

Launch

How would you explain a function  to someone else? What are some rules that all functions

follow?

A function has exactly one output for each input.

Explain to students that today, we are going to act out a special kind of function. Give

directions to distinct groups of students so that every student ends up with an activity to

perform.

If your birthday is in the summer, make an O with your arms.

If your birthday is in the fall, make an X with your arms or body.

If your birthday is in the winter, put your hand on your head.

If your birthday is in the spring, flap your arms like a chicken.

Debrief how students decided what to do. You might do this while students are still in motion

or it might work better with your class to stop the activity before discussing it. Example

questions:

Ask a student with their hands on their head why they aren’t flapping their arms like a

chicken.

Ask a student making an O with their arms how they knew what to do.

What is the input of the function we just acted out?

Student.

What is the output of the function we just acted out?

Action.

15 minutes



How do we know that you just acted out a function?

Since each student ("input") has only one action ("output"), it is still a function.

Up until now, all of the functions students have seen can be described by a single rule. In this activity

their behavior followed a set of rules  for which each input still had exactly one output. Make a big deal

about this, so they recognize how big of a shift this is!

Explain that students have just acted out what is called a piecewise function in math, and a conditional

in programming. The world is full of piecewise functions and conditionals!

Let’s try acting out another set of rules.

Everyone wearing sneakers put your hands on your head.

Everyone wearing a T-shirt make a T with your arms.

Everyone wearing pants put your hands on your hips.

Everyone wearing a T-shirt make an O with your arms.

Some students should have nothing to do. Others should look confused as to what to do. They may be

wearing sneakers and pants and not be able to put their hands on their head and on their hips at the

same time. They may be wearing a T-shirt and not be able to make a T and an O with their arms

simultaneously.

Observe that this set of rules doesn’t seem to have worked quite as well as the last. Debrief how

students decided what to do. Example Questions:

Ask a student wearing a T-shirt with their arms making an O…​ "I see that you’re wearing a T-shirt -

why aren’t you making a T with your arms?"

Ask a student wearing pants and sneakers…​ "Why don’t you have your hands on your head and

your hips?""

Ask a student who isn’t doing anything…​ "Why aren’t you doing anything?"

A function has exactly one output for each input.

Why doesn’t this set of directions (above) represent a function?

People wearing T-shirts - and wearing sneakers and pants - were told to do two conflicting

things.



Investigate
Have students work with their partner to think of examples of piecewise functions. Here are a few

examples to get you started:

Places like movie theaters and museums often have different ticket prices for students, children,

and senior citizens. That means the total price can’t be determined simply by asking how many

tickets there are — the price-per-person is conditioned on what kind of ticket is being purchased!

The US Postal Service charges a different rate for differently-sized letters and packages. That

means the total price can’t be determined just by asking how many things are being mailed — the

price is conditioned on what kind of things are shipped!

Many phone plans include a certain price-per-gigabyte for data, but only up to a maximum cutoff

amout. After that, the price-per-gigabyte gets a lot higher. That means we can’t calculate the cost

simply by knowing how many gigabytes there are — the cost is conditioned on what the cutoff is!

Synthesize
Share your findings as a class. You may also want to discuss whether square root and absolute values

are piecewise functions.

Partial Functions

Piecewise functions apply different rules over different "pieces" of their

domains. But what happens if there’s an "empty piece", for which there is

no rule?

For Algebra 2 or pre-calculus teachers, this is a useful time to address

partial functions . These are functions which are undefined over parts of

their domain (like division, which is undefined when the denominator is

zero). These definitions are independent from one another: a function

can be piecewise and  partial, just piecewise, or just partial. But

partiality comes up much more frequently when defining piecewise

functions, because students need to think through all the possible

inputs.

In the USPS example, the cost to mail tiny cards is undefined  because

the postal service doesn’t ship packages that are too small.



Conditionals in Programming

Overview
Having acted out a piecewise function, students take the first step towards writing one, by exploring

one or two programs that make use of piecewise functions, developing their own understanding, and

modifying the programs.

Launch
So far, all of the functions we’ve written had a single rule . The rule for gt  was to take a number and

make a solid, green triangle of that size. The rule for bc  was to take a number and make a solid, blue

circle of that size.

What if we want to write functions that apply different rules, based on certain conditions?

Investigate
Open the Red Shape Starter File.

Complete Red Shape - Explore.

Optional: Not all piecewise functions are one-to-one! If you’re ready to think about Onto

Functions , try Decide & Defend - Piecewise Onto Functions.

If you have more time to devote to piecewise functions, we have additional materials in Additional

Resources.

Synthesize
What happened when you gave red-shape  a shape that wasn’t defined in the program?

The program told us that the shape was unknown. Think about other functions that don’t work when

we give them an invalid input, like dividing by zero!

What is the syntax for writing piecewise functions?

Pyret allows us to write if-expressions, which contain:

1. the keyword if , followed by a condition.

2. a colon ( : ), followed by a rule for what the function should do if the condition is  true

3. an else: , followed by a rule for what to do if the condition is  false

We can chain them together to create multiple rules, with the last else:  being our fallback in case

every other condition is false .

20 minutes

https://code.pyret.org/editor#share=1QW7KtZHbAPdP1vjyI9-jXx7pSXrwzWJN
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/piecewise-functions-conditionals/pages/red-shape-explore.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/piecewise-functions-conditionals/pages/decide-defend-onto.html


Extending the Design Recipe

Overview
Students think through how much of the Red Shape program we could have written using the Design

Recipe.

Launch
Let’s see how the Design Recipe could help us to write a piecewise function.

Investigate
Turn to Word Problem: red-shape.

How do the Contract and Purpose Statement compare to other Contracts we’ve seen?

The Contract and Purpose Statements don’t change: we still write down the name, Domain

and Range of our function, and we still write down all the information we need in our Purpose

Statement (of course, now we have more important information to write - like our

condition(s)!).

How are the examples similar to other examples we’ve seen?

The examples are also pretty similar: we write the name of the function, followed by some

example inputs, and then we write what the function produces with those inputs.

How are these examples different from other examples we’ve seen?

Instead of every example being the same, each one is different.

Circle and label everything that is change -able.

20 minutes

Pedagogy Note

Up until now, there’s been a pattern that students may not have noticed:

the number of things in the Domain of a function was always  equal to

the number of labels in the example step, which was always  equal to the

number of variables in the definition. Make sure you explicitly draw

students' attention to this here, and point out that this pattern no

longer holds when it comes to piecewise functions. When it doesn’t

hold, that’s how we know  we need a piecewise function!

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/piecewise-functions-conditionals/pages/red-shape-dr.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/Contracts.shtml


What changes? What did you label?

In this case, there are more things to circle-and-label in the examples than there are things in

our Domain.

If there are more unique labels in the examples than there are things in the Domain, we’re

probably looking at a piecewise function. And if the examples cannot be explained by a single

pattern or rule, it’s definitely a piecewise function!

Think back to our examples of piecewise functions (ticket sales, postage, cell-phone data plans, etc)…​

knowing the input isn’t enough - we also need to know the conditions, and all the possible patterns!

Once we know that we’re dealing with multiple patterns, we’re ready to define them as a piecewise

function!

In this example, we have four patterns:

sometimes we produce (circle 20 "solid" "red")

sometimes we produce (triangle 20 "solid" "red")

sometimes we produce (rectangle 20 20 "solid" "red")

sometimes we produce (star 20 "solid" "red")

sometimes we produce (text "Unknown shape name!" 20 "red")

To define a piecewise function, each condition has both a result ("what should we do") and a

question ("when should we do it?").

When should we make circles?

When shape == "circle"

When should we make triangles?

When shape == "triangle"

When should we make rectangles?

When shape == "rectangle"

When should we make stars?

When shape == "star"

When should we draw the "Unknown shape name" text?

When shape  is…​.anything else

Adding the questions to our pattern gives us:



When shape == "circle" …​we produce (circle 20 "solid" "red")

When shape == "triangle" …​we produce (triangle 20 "solid" "red")

When shape == "rectangle" …​we produce (rectangle 20 20 "solid" "red")

When shape == "star" …​we produce (star 20 "solid" "red")

When shape  is anything else …​we produce (text "Unknown shape name!" 20 "red")

This practically gives away the body of our function definition!

fun red-shape​(​shape​):
  if shape == "circle": circle​(​20, "solid", "red"​)
  else if shape == "triangle": triangle​(​20, "solid", "red"​)
  else if shape == "rectangle": rectangle​(​20, 20, "solid", "red")
  else if shape == "star": star​(​20, "solid", "red"​)
  else: text​(​"Unknown shape name!", 20, "red"​)
  end
end

If you have more time for working with Piecewise Functions, you may want to have students create a

visual representation  of how the computer moves through a conditional function. Students will enjoy

getting more practice with piecewise functions while using emojis!

For additional practice, check out the Mood Generator Starter File, which uses emojis.

Although emojis look like images, they are actually characters in a string!

Optional: On Word Problem: Mood Generator, try defining a function that translates

moods into emojis.

Synthesize
How many examples are needed to fully test a piecewise function with four "pieces"?

More than one Way to Define Piecewise Functions!

There are several conditional expessions in Pyret. For those who are

curious, check out this Alternate Version of the Mood Generator Starter

File, which makes use of ask  instead of if . Pyret’s ask  construct is

similar to the switch  or case  statements in other languages.

Writing a second Red Shape program using ask  could be a good

extension for some students.

https://code.pyret.org/editor#share=1LMJSRMSdupZHPDYqxE-KM0HGx6qAkAHw
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/piecewise-functions-conditionals/pages/mood-generator-dr.html
https://code.pyret.org/editor#share=1LnIVlATup0Dl6KD0o4ab6gnXB8WMppCz
https://code.pyret.org/editor#share=1LnIVlATup0Dl6KD0o4ab6gnXB8WMppCz


More than two! In fact, we need an example for every option - every "piece"! (And in some cases there

is a "default" else  or otherwise  option, which we should write an example to test, too!)

What changes in a piecewise function?

The input, and also the rule the function applies to the input



Additional Resources:
We have one more program for your students to explore and scaffolded pages to support them

through the process!

Alice’s Restaurant Starter File

Alice’s Restaurant - Explore

Word Problem: Alice’s Restaurant

https://code.pyret.org/editor#share=1GScGyigfRPJDdCiGKGnISTXoVBm9f7aE
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/piecewise-functions-conditionals/pages/restaurant-explore.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/piecewise-functions-conditionals/pages/restaurant-dr.html

